File size: 4,740 Bytes
8368d3b 0151a55 f7cff02 0151a55 ab0bdf5 0151a55 f7cff02 ab0bdf5 0151a55 f7cff02 0151a55 f7cff02 0151a55 f7cff02 0151a55 f7cff02 0151a55 f7cff02 0151a55 f7cff02 0151a55 f7cff02 0151a55 f7cff02 0151a55 f7cff02 0151a55 f7cff02 0151a55 f7cff02 0151a55 f7cff02 0151a55 8368d3b ab0bdf5 0151a55 a6554e0 0151a55 a6554e0 0151a55 a6554e0 0151a55 ab0bdf5 a6554e0 ab0bdf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
language: en
tags:
- autotrain
- DEV
datasets:
- rajistics/autotrain-data-auditor-sentiment
- FinanceInc/auditor_sentiment
widget:
- text: Operating profit jumped to EUR 47 million from EUR 6.6 million
co2_eq_emissions: 3.165771608457648
model-index:
- name: auditor_sentiment_finetuned
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: FinanceInc/auditor_sentiment
type: glue
split: validation
metrics:
- type: accuracy
value: 0.848937
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWQ1N2FhNjliMzMyOGVjZWUwYTllMmM5Nzg3ZWYxYzY5NWZkYzQxMmQ3OTI1NjY5MjU3NjdiNzVkNGU5YWZiMCIsInZlcnNpb24iOjF9.W3FtDbi_SgD0kwotQ14wwVsmLor8uYR4vNlW8_MqTY99vw7pZNURkq8VtrGh9nKzGUJTv7vWdX1moIA8rCNEDA
- type: f1
value: 0.848282
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWMxY2Q2Nzk0MmM5NzJhNzVhOWYyMDhkMDk1MWJkMjFmOTA2YzUwNjMxNmVlMWI5NjhmOGI0NmQ0MGIyMWRhYSIsInZlcnNpb24iOjF9.HkMmrEUXuzU_jHjMO9g6V1Xo2svOe5gdlu28SyMUXugJbIy5_RJ6joDyhxj06TucT_ZRhr6v77AxCgHB3uwuDA
- type: recall
value: 0.808937
name: Recall
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODViZDYzOWYzNmQyMjlmYjhlMmExOGY0ZDBjMDFmNWMzYWM0OWVhYWJlNTBkMGEwYTYzY2IyN2Y0MmExZDE1YyIsInZlcnNpb24iOjF9.C1T-yBNPoZ8F-vVYIp9oTd6k4mTSOFw4kAcr6er68Psmt0mfuJ0Xb2nWGXeA0jrgV6bUoomTpZbwGRxtUXzAAA
- type: precision
value: 0.818542
name: Precision
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTk3NTIyZDA5MjY1NjZlMjQ0M2ZmNTU3MmRmYzM2NWVhZjU1ZDVkMTU1NTA0MzNkNzIxMjI5ZDAwNjNmNWNjNyIsInZlcnNpb24iOjF9.NBlzUtsAmjG-vBch2KxTNaahGdjFx1IYXWo7AsKQru1kNeVzmoYr-HMixQjgMG2Lg5XW8-yoP79eDOMh_lvLCg
- type: accuracy
value: 0.848937
name: Accuracy
verified: true
- type: f1
value: 0.848282
name: F1
verified: true
- type: recall
value: 0.808937
name: Recall
verified: true
- type: precision
value: 0.818542
name: Precision
verified: true
---
# Auditor Review Sentiment Model
This model has been finetuned from the proprietary version of [FinBERT](https://huggingface.co/FinanceInc/finbert-pretrain) trained internally using demo.org proprietary dataset of auditor evaluation of sentiment.
FinBERT is a BERT model pre-trained on a large corpora of financial texts. The purpose is to enhance financial NLP research and practice in the financial domain, hoping that financial practitioners and researchers can benefit from this model without the necessity of the significant computational resources required to train the model.
# Training Data
This model was fine-tuned using [Autotrain](https://ui.autotrain.huggingface.co/11671/metrics) from the demo-org/auditor_review review dataset.
# Model Status
This model is currently being evaluated in development until the end of the quarter. Based on the results, it may be elevated to production.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: [1167143226](https://huggingface.co/rajistics/autotrain-auditor-sentiment-1167143226)
- CO2 Emissions (in grams): 3.165771608457648
## Validation Metrics
- Loss: 0.3418470025062561
- Accuracy: 0.8617131062951496
- Macro F1: 0.8448284352912685
- Micro F1: 0.8617131062951496
- Weighted F1: 0.8612696670395574
- Macro Precision: 0.8440532616584138
- Micro Precision: 0.8617131062951496
- Weighted Precision: 0.8612762332366959
- Macro Recall: 0.8461980005490884
- Micro Recall: 0.8617131062951496
- Weighted Recall: 0.8617131062951496
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/rajistics/autotrain-auditor-sentiment-1167143226
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("rajistics/autotrain-auditor-sentiment-1167143226", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("rajistics/autotrain-auditor-sentiment-1167143226", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
``` |