first push
Browse files- .gitattributes +0 -4
- README.md +28 -1
- config.json +33 -0
- pytorch_model.bin +3 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
.gitattributes
CHANGED
@@ -9,14 +9,10 @@
|
|
9 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
14 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
15 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
16 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
17 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
20 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
22 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
|
|
9 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
12 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
13 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
14 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
16 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
17 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
18 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,30 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: "en"
|
3 |
+
tags:
|
4 |
+
- financial-text-analysis
|
5 |
+
- forward-looking-statement
|
6 |
+
widget:
|
7 |
+
- text: "We expect the age of our fleet to enhance availability and reliability due to reduced downtime for repairs. "
|
8 |
---
|
9 |
+
|
10 |
+
Forward-looking statements (FLS) inform investors of managers’ beliefs and opinions about firm's future events or results. Identifying forward-looking statements from corporate reports can assist investors in financial analysis. FinBERT-FLS is a FinBERT model fine-tuned on 3,500 manually annotated sentences from Management Discussion and Analysis section of annual reports of Russell 3000 firms.
|
11 |
+
|
12 |
+
**Input**: A financial text.
|
13 |
+
|
14 |
+
**Output**: Specific-FLS , Non-specific FLS, or Not-FLS.
|
15 |
+
|
16 |
+
# How to use
|
17 |
+
You can use this model with Transformers pipeline for forward-looking statement classification.
|
18 |
+
```python
|
19 |
+
# tested in transformers==4.18.0
|
20 |
+
from transformers import BertTokenizer, BertForSequenceClassification, pipeline
|
21 |
+
|
22 |
+
finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-fls',num_labels=3)
|
23 |
+
tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-fls')
|
24 |
+
nlp = pipeline("text-classification", model=finbert, tokenizer=tokenizer)
|
25 |
+
results = nlp('We expect the age of our fleet to enhance availability and reliability due to reduced downtime for repairs.')
|
26 |
+
print(results) # [{'label': 'Specific FLS', 'score': 0.77278733253479}]
|
27 |
+
|
28 |
+
```
|
29 |
+
|
30 |
+
Visit [FinBERT.AI](https://finbert.ai/) for more details on the recent development of FinBERT.
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForSequenceClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"gradient_checkpointing": false,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"id2label": {
|
11 |
+
"0": "Not FLS",
|
12 |
+
"1": "Non-specific FLS",
|
13 |
+
"2": "Specific FLS"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"Not FLS": 0,
|
19 |
+
"Non-specific FLS": 1,
|
20 |
+
"Specific FLS": 2
|
21 |
+
},
|
22 |
+
"layer_norm_eps": 1e-12,
|
23 |
+
"max_position_embeddings": 512,
|
24 |
+
"model_type": "bert",
|
25 |
+
"num_attention_heads": 12,
|
26 |
+
"num_hidden_layers": 12,
|
27 |
+
"pad_token_id": 0,
|
28 |
+
"position_embedding_type": "absolute",
|
29 |
+
"transformers_version": "4.3.3",
|
30 |
+
"type_vocab_size": 2,
|
31 |
+
"use_cache": true,
|
32 |
+
"vocab_size": 30873
|
33 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0eed747f529e85e5aedb2b3a16d4765f80857160e9702b191781bf1e5688cd68
|
3 |
+
size 439104222
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a448ecd6685ca0024ee8fe5a7b8bf2ee038a0f564a5fea75d3b152c96d1d5839
|
3 |
+
size 2159
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|