aapot commited on
Commit
d2d028b
1 Parent(s): ec6248e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -10
README.md CHANGED
@@ -39,7 +39,7 @@ This model was fine-tuned for instruction following. Instruction-tuned models ar
39
 
40
  ### How to use
41
 
42
- If you want to use this model for instruction-following, you need to use the same prompt format we used in the fine-tuning process (basically the same format what Meta used in their Llama2 models). **Note: do not use "LlamaTokenizer" from transformers library but always use the AutoTokenizer instead, or use the plain sentencepiece tokenizer.** Here is an example using the instruction-following prompt format, with some generation arguments you can modify for your use:
43
 
44
  ```python
45
  from transformers import AutoTokenizer, AutoModelForCausalLM
@@ -47,19 +47,11 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
47
  system_prompt = "Olet tekoälyavustaja. Vastaat aina mahdollisimman avuliaasti. Vastauksesi eivät saa sisältää mitään haitallista, epäeettistä, rasistista, seksististä, vaarallista tai laitonta sisältöä. Jos kysymyksessä ei ole mitään järkeä tai se ei ole asiasisällöltään johdonmukainen, selitä miksi sen sijaan, että vastaisit jotain väärin. Jos et tiedä vastausta kysymykseen, älä kerro väärää tietoa."
48
 
49
 
50
- def format_prompt(prompt: str) -> str:
51
- prompt = f" [INST] <<SYS>>\n{system_prompt.strip()}\n<</SYS>>\n\n{prompt.strip()} [/INST] "
52
- return prompt
53
-
54
-
55
  tokenizer = AutoTokenizer.from_pretrained("Finnish-NLP/Ahma-3B-Instruct")
56
  model = AutoModelForCausalLM.from_pretrained("Finnish-NLP/Ahma-3B-Instruct")
57
  model = model.to("cuda")
58
 
59
- # use the custom prompt format function or the chat template feature in the tokenizer to format your inputs
60
-
61
- # prompt = format_prompt("Kerro kolme hyötyä, joita pienet avoimen lähdekoodin kielimallit tuovat?")
62
- # inputs = tokenizer(prompt, return_tensors="pt")
63
 
64
  messages = [
65
  {
@@ -100,6 +92,8 @@ You may experiment with different system prompt instructions too if you like.
100
 
101
  ### Limitations and bias
102
 
 
 
103
  The training data used for this model contains a lot of content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model.
104
 
105
  ## Training data
 
39
 
40
  ### How to use
41
 
42
+ If you want to use this model for instruction-following, you need to use the same prompt format we used in the fine-tuning process (basically the same format what Meta used in their Llama2 models). **Note: do not use "LlamaTokenizer" from transformers library but always use the AutoTokenizer instead, or use the plain sentencepiece tokenizer.** Here is an example using the instruction-following prompt format with the tokenizer's built-in chat template feature which makes it easy to format your potential multi-turn chats too, with some generation arguments you can modify for your use:
43
 
44
  ```python
45
  from transformers import AutoTokenizer, AutoModelForCausalLM
 
47
  system_prompt = "Olet tekoälyavustaja. Vastaat aina mahdollisimman avuliaasti. Vastauksesi eivät saa sisältää mitään haitallista, epäeettistä, rasistista, seksististä, vaarallista tai laitonta sisältöä. Jos kysymyksessä ei ole mitään järkeä tai se ei ole asiasisällöltään johdonmukainen, selitä miksi sen sijaan, että vastaisit jotain väärin. Jos et tiedä vastausta kysymykseen, älä kerro väärää tietoa."
48
 
49
 
 
 
 
 
 
50
  tokenizer = AutoTokenizer.from_pretrained("Finnish-NLP/Ahma-3B-Instruct")
51
  model = AutoModelForCausalLM.from_pretrained("Finnish-NLP/Ahma-3B-Instruct")
52
  model = model.to("cuda")
53
 
54
+ # use the chat template feature in the tokenizer to format your (multi-turn) inputs
 
 
 
55
 
56
  messages = [
57
  {
 
92
 
93
  ### Limitations and bias
94
 
95
+ This model was trained only with Finnish texts excluding code so it should not be used for multilingual and code generation use cases.
96
+
97
  The training data used for this model contains a lot of content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model.
98
 
99
  ## Training data