aapot
commited on
Commit
•
067016b
1
Parent(s):
7b87c8d
Add convbert pretrain hyperparams
Browse files- configure_pretraining.py +131 -0
configure_pretraining.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
|
3 |
+
"""Config controlling hyperparameters for pre-training."""
|
4 |
+
|
5 |
+
from __future__ import absolute_import
|
6 |
+
from __future__ import division
|
7 |
+
from __future__ import print_function
|
8 |
+
|
9 |
+
import os
|
10 |
+
|
11 |
+
|
12 |
+
class PretrainingConfig(object):
|
13 |
+
"""Defines pre-training hyperparameters."""
|
14 |
+
|
15 |
+
def __init__(self, model_name, data_dir, **kwargs):
|
16 |
+
self.model_name = model_name
|
17 |
+
self.debug = False # debug mode
|
18 |
+
self.do_train = True # pre-train
|
19 |
+
self.do_eval = False # evaluate generator/discriminator on unlabeled data
|
20 |
+
|
21 |
+
# loss functions
|
22 |
+
self.electra_objective = True # if False, use the BERT objective instead
|
23 |
+
self.gen_weight = 1.0 # masked language modeling / generator loss
|
24 |
+
self.disc_weight = 50.0 # discriminator loss
|
25 |
+
self.mask_prob = 0.15 # percent of input tokens to mask out / replace
|
26 |
+
|
27 |
+
# optimization
|
28 |
+
self.learning_rate = 1e-4
|
29 |
+
self.lr_decay_power = 1.0 # linear weight decay by default
|
30 |
+
self.weight_decay_rate = 0.01
|
31 |
+
self.num_warmup_steps = 20000
|
32 |
+
|
33 |
+
# training settings
|
34 |
+
self.iterations_per_loop = 200
|
35 |
+
self.save_checkpoints_steps = 50000
|
36 |
+
self.num_train_steps = 1000000
|
37 |
+
self.num_eval_steps = 10000
|
38 |
+
|
39 |
+
# model settings
|
40 |
+
self.model_size = "base" # one of "small", "medium-smal", or "base"
|
41 |
+
# override the default transformer hparams for the provided model size; see
|
42 |
+
# modeling.BertConfig for the possible hparams and util.training_utils for
|
43 |
+
# the defaults
|
44 |
+
self.model_hparam_overrides = (
|
45 |
+
kwargs["model_hparam_overrides"]
|
46 |
+
if "model_hparam_overrides" in kwargs else {})
|
47 |
+
self.embedding_size = None # bert hidden size by default
|
48 |
+
self.vocab_size = 50265 # number of tokens in the vocabulary
|
49 |
+
self.do_lower_case = False # lowercase the input?
|
50 |
+
|
51 |
+
# ConvBERT additional config
|
52 |
+
self.conv_kernel_size=9
|
53 |
+
self.linear_groups=2
|
54 |
+
self.head_ratio=2
|
55 |
+
self.conv_type="sdconv"
|
56 |
+
# generator settings
|
57 |
+
self.uniform_generator = False # generator is uniform at random
|
58 |
+
self.untied_generator_embeddings = False # tie generator/discriminator
|
59 |
+
# token embeddings?
|
60 |
+
self.untied_generator = True # tie all generator/discriminator weights?
|
61 |
+
self.generator_layers = 1.0 # frac of discriminator layers for generator
|
62 |
+
self.generator_hidden_size = 0.25 # frac of discrim hidden size for gen
|
63 |
+
self.disallow_correct = False # force the generator to sample incorrect
|
64 |
+
# tokens (so 15% of tokens are always
|
65 |
+
# fake)
|
66 |
+
self.temperature = 1.0 # temperature for sampling from generator
|
67 |
+
|
68 |
+
# batch sizes
|
69 |
+
self.max_seq_length = 512
|
70 |
+
self.train_batch_size = 128
|
71 |
+
self.eval_batch_size = 128
|
72 |
+
|
73 |
+
# TPU settings
|
74 |
+
self.use_tpu = True
|
75 |
+
self.tpu_job_name = None
|
76 |
+
self.num_tpu_cores = 8
|
77 |
+
self.tpu_name = "local" # cloud TPU to use for training
|
78 |
+
self.tpu_zone = None # GCE zone where the Cloud TPU is located in
|
79 |
+
self.gcp_project = None # project name for the Cloud TPU-enabled project
|
80 |
+
|
81 |
+
# default locations of data files
|
82 |
+
self.pretrain_tfrecords = "/researchdisk/train_tokenized_512/pretrain_data.tfrecord*"
|
83 |
+
self.vocab_file = "./vocab.txt"
|
84 |
+
self.model_dir = "./"
|
85 |
+
results_dir = os.path.join(self.model_dir, "results")
|
86 |
+
self.results_txt = os.path.join(results_dir, "unsup_results.txt")
|
87 |
+
self.results_pkl = os.path.join(results_dir, "unsup_results.pkl")
|
88 |
+
|
89 |
+
# update defaults with passed-in hyperparameters
|
90 |
+
self.update(kwargs)
|
91 |
+
|
92 |
+
self.max_predictions_per_seq = int((self.mask_prob + 0.005) *
|
93 |
+
self.max_seq_length)
|
94 |
+
|
95 |
+
# debug-mode settings
|
96 |
+
if self.debug:
|
97 |
+
self.train_batch_size = 8
|
98 |
+
self.num_train_steps = 20
|
99 |
+
self.eval_batch_size = 4
|
100 |
+
self.iterations_per_loop = 1
|
101 |
+
self.num_eval_steps = 2
|
102 |
+
|
103 |
+
# defaults for different-sized model
|
104 |
+
if self.model_size in ["medium-small"]:
|
105 |
+
self.embedding_size = 128
|
106 |
+
self.conv_kernel_size=9
|
107 |
+
self.linear_groups=2
|
108 |
+
self.head_ratio=2
|
109 |
+
elif self.model_size in ["small"]:
|
110 |
+
self.embedding_size = 128
|
111 |
+
self.conv_kernel_size=9
|
112 |
+
self.linear_groups=1
|
113 |
+
self.head_ratio=2
|
114 |
+
self.learning_rate = 3e-4
|
115 |
+
elif self.model_size in ["base"]:
|
116 |
+
self.generator_hidden_size = 1/3
|
117 |
+
self.learning_rate = 1e-4
|
118 |
+
self.train_batch_size = 256
|
119 |
+
self.eval_batch_size = 256
|
120 |
+
self.conv_kernel_size=9
|
121 |
+
self.linear_groups=1
|
122 |
+
self.head_ratio=2
|
123 |
+
|
124 |
+
# passed-in-arguments override (for example) debug-mode defaults
|
125 |
+
self.update(kwargs)
|
126 |
+
|
127 |
+
def update(self, kwargs):
|
128 |
+
for k, v in kwargs.items():
|
129 |
+
if k not in self.__dict__:
|
130 |
+
raise ValueError("Unknown hparam " + k)
|
131 |
+
self.__dict__[k] = v
|