FlavienDeseure
commited on
Commit
•
b3de7b3
1
Parent(s):
42ba83f
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1092.79 +/- 192.14
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59f745c1a6516f3119284535ab735a8dfb66ef336d19d425476453c982c88b79
|
3 |
+
size 129256
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6d5d76dc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe6d5d76e50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe6d5d76ee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe6d5d76f70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe6d5cfd040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe6d5cfd0d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe6d5cfd160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe6d5cfd1f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe6d5cfd280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe6d5cfd310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6d5cfd3a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe6d5cfd430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fe6d5d72930>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678111697885160819,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABeGJT9zNYM/ePZJv37FTb98vdo+JsDhv1UGez4SoMY+SwWcvzXTFzyci5++LmyXP+O2Jz9pjqi/drWpv9ihA75ujJW+4aWYP8yxFr/FaG6/MoSVvkAgjT/Kt7q9xpu3v89tTL8aiCc/Q0OqPt5xKj/CNLc/kNlAP+tJeb6XoBQ/Dg0gPxR4Tj2I5YE/Wk6AvxSogz3SwSDAiOJivX8yo7/FfM4/6l37vpC+jr9eIwg/yQAev3yidr64TcA+y26evzNqtr+/tqk+nKOwugOzY7/PbUy/GognP0NDqj7ecSo/clRsPX3hCr/bUVY/TsQ4vZoKij70TG4/qZhaPpR8Yb9txhA/noCUQJNWmT9xTQq9xeOQvyo+kz8GdNW+xM2EviJB9T+JNe0++IPpPpZg5zzLX64/six+vlFdZD9LiktAz21MvxqIJz9DQ6o++z/Av9jNoL0LLKU+5gypPm0WDj9NEsI/nWwEwEy49D6RkGk/x54WPl9dXkDrbMA+DMrsP3/3rr9TXN0+60ibv1ul77+WsdU/fbqaP5TpTz5gLBZA6+D4Po64Iz9xMym/3+n2P1hKoD/Il8O/mnRAwN5xKj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAoo9o1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbwGlPAAAAAA/bv+/AAAAAPyaCT0AAAAAWpz1PwAAAABW+Nc9AAAAAH1Q7j8AAAAA+fg2PQAAAAAuCQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASUFztgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEeNkT0AAAAA1Wv9vwAAAABSCtC9AAAAAHn69z8AAAAA/D2JPQAAAACCgPc/AAAAAHQOWz0AAAAAhE/gvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAObjj7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICwfAe+AAAAAKh14r8AAAAANEGBPAAAAACRf/k/AAAAAKUxAL4AAAAAeEPgPwAAAAC9Hgk9AAAAAMpmAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP+8Y2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqcUHvgAAAAC6SgDAAAAAAOu0rr0AAAAAA7rkPwAAAADBXZA9AAAAACXa8T8AAAAAeVULvgAAAAAnJeC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJRlOIwdsBSMAWyUTegDjAF0lEdArpsX7SApa3V9lChoBkdAllE+loDgZWgHTegDaAhHQK6hm5J9RaZ1fZQoaAZHQJTBMlruYyBoB03oA2gIR0CuojhkiD/VdX2UKGgGR0CV3NSSNfgKaAdN6ANoCEdArqjOC2+fy3V9lChoBkdAlY21EAo5P2gHTegDaAhHQK6pUzmfXf91fZQoaAZHQJR9k44p+c9oB03oA2gIR0Cuss6TGHYZdX2UKGgGR0CWLoPvrnklaAdN6ANoCEdArrN3Ilt0m3V9lChoBkdAk964nWrfcmgHTegDaAhHQK65kksz2vl1fZQoaAZHQInFZWeYlY5oB03oA2gIR0CuueibtqpMdX2UKGgGR0CSWTLMcIZ7aAdN6ANoCEdArsCdBt1p03V9lChoBkdAliTIcaOxS2gHTegDaAhHQK7BSNIbwSd1fZQoaAZHQJRbf1BdD6ZoB03oA2gIR0CuyBeotL+QdX2UKGgGR0CTBScFyJbdaAdN6ANoCEdArsidzhgmZ3V9lChoBkdAlNfIRujynWgHTegDaAhHQK7R48K5TZR1fZQoaAZHQJLSrZSNwR5oB03oA2gIR0Cu0ovQnhKldX2UKGgGR0CTG7Gd7OVxaAdN6ANoCEdArti/vF3pwHV9lChoBkdAkrDwEdNnG2gHTegDaAhHQK7ZHgKF7D51fZQoaAZHQJHHd3PiT+xoB03oA2gIR0Cu3/D2JzkqdX2UKGgGR0CTnufq5byIaAdN6ANoCEdAruCcahpQDXV9lChoBkdAkZqIB/7SA2gHTegDaAhHQK7olfixVyZ1fZQoaAZHQI6wvcWTHKhoB03oA2gIR0Cu6SyzollcdX2UKGgGR0CS74nJ1aGIaAdN6ANoCEdArvHm5z5oG3V9lChoBkdAkuPuyVv/BGgHTegDaAhHQK7ykA7xNIt1fZQoaAZHQIvs9vZRKpVoB03oA2gIR0Cu+J4zi0fHdX2UKGgGR0CTeg557gKnaAdN6ANoCEdArvj73sXzlXV9lChoBkdAkMvlAVwgkmgHTegDaAhHQK7/wzYVZcN1fZQoaAZHQJFRAdhiLEVoB03oA2gIR0CvAHDvVmSRdX2UKGgGR0CRB4CF9KEnaAdN6ANoCEdArwieTX8O1HV9lChoBkdAkbVgTAWSEGgHTegDaAhHQK8JMTUy57R1fZQoaAZHQE6t36hxo7FoB0uqaAhHQK8MwrksBhh1fZQoaAZHQJQYljSXt0FoB03oA2gIR0CvERxKYiPidX2UKGgGR0CTNQdRzijtaAdN6ANoCEdArxHFIZqEe3V9lChoBkdAkGO/pIMBqGgHTegDaAhHQK8XzoIOYpl1fZQoaAZHQJOawfOlfqpoB03oA2gIR0CvGnJRfnfVdX2UKGgGR0CTw2ylvZRLaAdN6ANoCEdArx7NhgE2YXV9lChoBkdAk5c1EZzgdmgHTegDaAhHQK8fdlcQiA51fZQoaAZHQJUx0kAxSHdoB03oA2gIR0CvKE6DGtITdX2UKGgGR0CS/SEpAlfJaAdN6ANoCEdAryv1sUIsy3V9lChoBkdAk5W7ONYKY2gHTegDaAhHQK8wYJaaCtl1fZQoaAZHQJLMLVUdaMdoB03oA2gIR0CvMQbxusLfdX2UKGgGR0CUJWbutwJgaAdN6ANoCEdArzcJAfMfR3V9lChoBkdAlQi0sBhhIGgHTegDaAhHQK85svHLidd1fZQoaAZHQJM35azNUwVoB03oA2gIR0CvPg8NQTEjdX2UKGgGR0CTgWcnmaH9aAdN6ANoCEdArz60rVe8f3V9lChoBkdAkrkFVPva12gHTegDaAhHQK9H1pGFzuF1fZQoaAZHQJK7+p84PwxoB03oA2gIR0CvSxpKSPludX2UKGgGR0CTOvGOuJUHaAdN6ANoCEdAr0+CwwCbMHV9lChoBkdAkyRraufVZ2gHTegDaAhHQK9QJw4KhL51fZQoaAZHQJOSi+6Ae7toB03oA2gIR0CvVpKNyYG/dX2UKGgGR0CUL1jLSuyNaAdN6ANoCEdAr1mJF3IMjXV9lChoBkdAkv3q+FlCkWgHTegDaAhHQK9efjQRf4R1fZQoaAZHQJJm9yimEXdoB03oA2gIR0CvX4sVk+X7dX2UKGgGR0CTbEVKPGQ0aAdN6ANoCEdAr2i6ziS7oXV9lChoBkdAlJKkZBLPEGgHTegDaAhHQK9rcgK4QSV1fZQoaAZHQJPm2QHRkVhoB03oA2gIR0Cvb93MQmNSdX2UKGgGR0CTcM7KJVKgaAdN6ANoCEdAr3CGY4Qz13V9lChoBkdAkx9X6yjYZmgHTegDaAhHQK92uAI6bON1fZQoaAZHQJKHxZ+x4Y9oB03oA2gIR0CveWyOq//OdX2UKGgGR0CS6TbLEDQraAdN6ANoCEdAr37FWhh6SnV9lChoBkdAkob1J17pmmgHTegDaAhHQK9/tBAv+Ox1fZQoaAZHQJXEpA6dUbVoB03oA2gIR0CviDlwtJ4CdX2UKGgGR0CVSwQrMC9zaAdN6ANoCEdAr4r6H2ys0nV9lChoBkdAlV/Lehwl0GgHTegDaAhHQK+PTIdU83d1fZQoaAZHQJT9Pdi2DxtoB03oA2gIR0Cvj+fvv0AcdX2UKGgGR0CRn9drO7g9aAdN6ANoCEdAr5XkjJMg2nV9lChoBkdAk7bNLpRoAWgHTegDaAhHQK+YljOs1bd1fZQoaAZHQJMqwH/tICloB03oA2gIR0Cvnp/gaWHDdX2UKGgGR0CVQDcqvvBraAdN6ANoCEdAr5+f6j323HV9lChoBkdAk2J9Y8uBc2gHTegDaAhHQK+nsFj/dZd1fZQoaAZHQJJ09jQRf4RoB03oA2gIR0Cvqm1VYISldX2UKGgGR0CTFwt+CsfaaAdN6ANoCEdAr67NyJbdJ3V9lChoBkdAkpFKr7wazmgHTegDaAhHQK+vdd+ocaR1fZQoaAZHQI9sNzhgmZ5oB03oA2gIR0CvtWkpZwGXdX2UKGgGR0CMa8LsKLKnaAdN6ANoCEdAr7gfhsImgXV9lChoBkdAkmnFKK5082gHTegDaAhHQK++PrE9+w11fZQoaAZHQI+dlr433pRoB03oA2gIR0CvvzkfT1CgdX2UKGgGR0CUjQm1YyO8aAdN6ANoCEdAr8bLgsK9f3V9lChoBkdAk5+486mwaGgHTegDaAhHQK/JczzErG11fZQoaAZHQJNwbEaVD8doB03oA2gIR0CvzcukDZDidX2UKGgGR0CRFiNFz+3paAdN6ANoCEdAr85wL1EmY3V9lChoBkdAk3md5UtI1GgHTegDaAhHQK/Ue3vQWvd1fZQoaAZHQJRFzEFW4mVoB03oA2gIR0Cv1zhKlHjIdX2UKGgGR0CR+Ir0rbxmaAdN6ANoCEdAr94bOAy2yHV9lChoBkdAiih7jLjgh2gHTegDaAhHQK/fI6gdwNt1fZQoaAZHQJSRucAiml9oB03oA2gIR0Cv5ikpiI+GdX2UKGgGR0CQAcj3mFJyaAdN6ANoCEdAr+jbNnoPkXV9lChoBkdAi6saUqx1PmgHTegDaAhHQK/tSR02cax1fZQoaAZHQIxNUxVQyh1oB03oA2gIR0Cv7eyM1jy4dX2UKGgGR0CRdqTjNpudaAdN6ANoCEdAr/QJt1p0wXV9lChoBkdAkM73NgSey2gHTegDaAhHQK/3Okdmxt51fZQoaAZHQJFwIgA6uGNoB03oA2gIR0Cv/ifYjB2wdX2UKGgGR0CR9uMVDa4+aAdN6ANoCEdAr/8w/xDst3V9lChoBkdAjO/RgZ0jkmgHTegDaAhHQLAC1wIt16p1fZQoaAZHQJGXLXtjTa1oB03oA2gIR0CwBCufNA1OdX2UKGgGR0CUhkQuVX3haAdN6ANoCEdAsAZvO7g883V9lChoBkdAkXCpAIIF/2gHTegDaAhHQLAGwg1WKdh1fZQoaAZHQJIcGN83MpxoB03oA2gIR0CwCdYpMHrydX2UKGgGR0CRHYYgaFVUaAdN6ANoCEdAsAvD2M85j3V9lChoBkdAkckjWK/EfmgHTegDaAhHQLAPRU4JeE91fZQoaAZHQJInQFkhA4ZoB03oA2gIR0CwD6XIhhYvdWUu"
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed75bda4db22f08a7a55de5729faa03b2fc833accd6233cd777fc72ab79359df
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bac3cd9ddcfda87d7b06f3b91ee467e7eecf8710b25abde0149566a231f21814
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6d5d76dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe6d5d76e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe6d5d76ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe6d5d76f70>", "_build": "<function ActorCriticPolicy._build at 0x7fe6d5cfd040>", "forward": "<function ActorCriticPolicy.forward at 0x7fe6d5cfd0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe6d5cfd160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe6d5cfd1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe6d5cfd280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe6d5cfd310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6d5cfd3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe6d5cfd430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe6d5d72930>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678111697885160819, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABeGJT9zNYM/ePZJv37FTb98vdo+JsDhv1UGez4SoMY+SwWcvzXTFzyci5++LmyXP+O2Jz9pjqi/drWpv9ihA75ujJW+4aWYP8yxFr/FaG6/MoSVvkAgjT/Kt7q9xpu3v89tTL8aiCc/Q0OqPt5xKj/CNLc/kNlAP+tJeb6XoBQ/Dg0gPxR4Tj2I5YE/Wk6AvxSogz3SwSDAiOJivX8yo7/FfM4/6l37vpC+jr9eIwg/yQAev3yidr64TcA+y26evzNqtr+/tqk+nKOwugOzY7/PbUy/GognP0NDqj7ecSo/clRsPX3hCr/bUVY/TsQ4vZoKij70TG4/qZhaPpR8Yb9txhA/noCUQJNWmT9xTQq9xeOQvyo+kz8GdNW+xM2EviJB9T+JNe0++IPpPpZg5zzLX64/six+vlFdZD9LiktAz21MvxqIJz9DQ6o++z/Av9jNoL0LLKU+5gypPm0WDj9NEsI/nWwEwEy49D6RkGk/x54WPl9dXkDrbMA+DMrsP3/3rr9TXN0+60ibv1ul77+WsdU/fbqaP5TpTz5gLBZA6+D4Po64Iz9xMym/3+n2P1hKoD/Il8O/mnRAwN5xKj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAoo9o1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbwGlPAAAAAA/bv+/AAAAAPyaCT0AAAAAWpz1PwAAAABW+Nc9AAAAAH1Q7j8AAAAA+fg2PQAAAAAuCQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASUFztgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEeNkT0AAAAA1Wv9vwAAAABSCtC9AAAAAHn69z8AAAAA/D2JPQAAAACCgPc/AAAAAHQOWz0AAAAAhE/gvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAObjj7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICwfAe+AAAAAKh14r8AAAAANEGBPAAAAACRf/k/AAAAAKUxAL4AAAAAeEPgPwAAAAC9Hgk9AAAAAMpmAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP+8Y2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqcUHvgAAAAC6SgDAAAAAAOu0rr0AAAAAA7rkPwAAAADBXZA9AAAAACXa8T8AAAAAeVULvgAAAAAnJeC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJRlOIwdsBSMAWyUTegDjAF0lEdArpsX7SApa3V9lChoBkdAllE+loDgZWgHTegDaAhHQK6hm5J9RaZ1fZQoaAZHQJTBMlruYyBoB03oA2gIR0CuojhkiD/VdX2UKGgGR0CV3NSSNfgKaAdN6ANoCEdArqjOC2+fy3V9lChoBkdAlY21EAo5P2gHTegDaAhHQK6pUzmfXf91fZQoaAZHQJR9k44p+c9oB03oA2gIR0Cuss6TGHYZdX2UKGgGR0CWLoPvrnklaAdN6ANoCEdArrN3Ilt0m3V9lChoBkdAk964nWrfcmgHTegDaAhHQK65kksz2vl1fZQoaAZHQInFZWeYlY5oB03oA2gIR0CuueibtqpMdX2UKGgGR0CSWTLMcIZ7aAdN6ANoCEdArsCdBt1p03V9lChoBkdAliTIcaOxS2gHTegDaAhHQK7BSNIbwSd1fZQoaAZHQJRbf1BdD6ZoB03oA2gIR0CuyBeotL+QdX2UKGgGR0CTBScFyJbdaAdN6ANoCEdArsidzhgmZ3V9lChoBkdAlNfIRujynWgHTegDaAhHQK7R48K5TZR1fZQoaAZHQJLSrZSNwR5oB03oA2gIR0Cu0ovQnhKldX2UKGgGR0CTG7Gd7OVxaAdN6ANoCEdArti/vF3pwHV9lChoBkdAkrDwEdNnG2gHTegDaAhHQK7ZHgKF7D51fZQoaAZHQJHHd3PiT+xoB03oA2gIR0Cu3/D2JzkqdX2UKGgGR0CTnufq5byIaAdN6ANoCEdAruCcahpQDXV9lChoBkdAkZqIB/7SA2gHTegDaAhHQK7olfixVyZ1fZQoaAZHQI6wvcWTHKhoB03oA2gIR0Cu6SyzollcdX2UKGgGR0CS74nJ1aGIaAdN6ANoCEdArvHm5z5oG3V9lChoBkdAkuPuyVv/BGgHTegDaAhHQK7ykA7xNIt1fZQoaAZHQIvs9vZRKpVoB03oA2gIR0Cu+J4zi0fHdX2UKGgGR0CTeg557gKnaAdN6ANoCEdArvj73sXzlXV9lChoBkdAkMvlAVwgkmgHTegDaAhHQK7/wzYVZcN1fZQoaAZHQJFRAdhiLEVoB03oA2gIR0CvAHDvVmSRdX2UKGgGR0CRB4CF9KEnaAdN6ANoCEdArwieTX8O1HV9lChoBkdAkbVgTAWSEGgHTegDaAhHQK8JMTUy57R1fZQoaAZHQE6t36hxo7FoB0uqaAhHQK8MwrksBhh1fZQoaAZHQJQYljSXt0FoB03oA2gIR0CvERxKYiPidX2UKGgGR0CTNQdRzijtaAdN6ANoCEdArxHFIZqEe3V9lChoBkdAkGO/pIMBqGgHTegDaAhHQK8XzoIOYpl1fZQoaAZHQJOawfOlfqpoB03oA2gIR0CvGnJRfnfVdX2UKGgGR0CTw2ylvZRLaAdN6ANoCEdArx7NhgE2YXV9lChoBkdAk5c1EZzgdmgHTegDaAhHQK8fdlcQiA51fZQoaAZHQJUx0kAxSHdoB03oA2gIR0CvKE6DGtITdX2UKGgGR0CS/SEpAlfJaAdN6ANoCEdAryv1sUIsy3V9lChoBkdAk5W7ONYKY2gHTegDaAhHQK8wYJaaCtl1fZQoaAZHQJLMLVUdaMdoB03oA2gIR0CvMQbxusLfdX2UKGgGR0CUJWbutwJgaAdN6ANoCEdArzcJAfMfR3V9lChoBkdAlQi0sBhhIGgHTegDaAhHQK85svHLidd1fZQoaAZHQJM35azNUwVoB03oA2gIR0CvPg8NQTEjdX2UKGgGR0CTgWcnmaH9aAdN6ANoCEdArz60rVe8f3V9lChoBkdAkrkFVPva12gHTegDaAhHQK9H1pGFzuF1fZQoaAZHQJK7+p84PwxoB03oA2gIR0CvSxpKSPludX2UKGgGR0CTOvGOuJUHaAdN6ANoCEdAr0+CwwCbMHV9lChoBkdAkyRraufVZ2gHTegDaAhHQK9QJw4KhL51fZQoaAZHQJOSi+6Ae7toB03oA2gIR0CvVpKNyYG/dX2UKGgGR0CUL1jLSuyNaAdN6ANoCEdAr1mJF3IMjXV9lChoBkdAkv3q+FlCkWgHTegDaAhHQK9efjQRf4R1fZQoaAZHQJJm9yimEXdoB03oA2gIR0CvX4sVk+X7dX2UKGgGR0CTbEVKPGQ0aAdN6ANoCEdAr2i6ziS7oXV9lChoBkdAlJKkZBLPEGgHTegDaAhHQK9rcgK4QSV1fZQoaAZHQJPm2QHRkVhoB03oA2gIR0Cvb93MQmNSdX2UKGgGR0CTcM7KJVKgaAdN6ANoCEdAr3CGY4Qz13V9lChoBkdAkx9X6yjYZmgHTegDaAhHQK92uAI6bON1fZQoaAZHQJKHxZ+x4Y9oB03oA2gIR0CveWyOq//OdX2UKGgGR0CS6TbLEDQraAdN6ANoCEdAr37FWhh6SnV9lChoBkdAkob1J17pmmgHTegDaAhHQK9/tBAv+Ox1fZQoaAZHQJXEpA6dUbVoB03oA2gIR0CviDlwtJ4CdX2UKGgGR0CVSwQrMC9zaAdN6ANoCEdAr4r6H2ys0nV9lChoBkdAlV/Lehwl0GgHTegDaAhHQK+PTIdU83d1fZQoaAZHQJT9Pdi2DxtoB03oA2gIR0Cvj+fvv0AcdX2UKGgGR0CRn9drO7g9aAdN6ANoCEdAr5XkjJMg2nV9lChoBkdAk7bNLpRoAWgHTegDaAhHQK+YljOs1bd1fZQoaAZHQJMqwH/tICloB03oA2gIR0Cvnp/gaWHDdX2UKGgGR0CVQDcqvvBraAdN6ANoCEdAr5+f6j323HV9lChoBkdAk2J9Y8uBc2gHTegDaAhHQK+nsFj/dZd1fZQoaAZHQJJ09jQRf4RoB03oA2gIR0Cvqm1VYISldX2UKGgGR0CTFwt+CsfaaAdN6ANoCEdAr67NyJbdJ3V9lChoBkdAkpFKr7wazmgHTegDaAhHQK+vdd+ocaR1fZQoaAZHQI9sNzhgmZ5oB03oA2gIR0CvtWkpZwGXdX2UKGgGR0CMa8LsKLKnaAdN6ANoCEdAr7gfhsImgXV9lChoBkdAkmnFKK5082gHTegDaAhHQK++PrE9+w11fZQoaAZHQI+dlr433pRoB03oA2gIR0CvvzkfT1CgdX2UKGgGR0CUjQm1YyO8aAdN6ANoCEdAr8bLgsK9f3V9lChoBkdAk5+486mwaGgHTegDaAhHQK/JczzErG11fZQoaAZHQJNwbEaVD8doB03oA2gIR0CvzcukDZDidX2UKGgGR0CRFiNFz+3paAdN6ANoCEdAr85wL1EmY3V9lChoBkdAk3md5UtI1GgHTegDaAhHQK/Ue3vQWvd1fZQoaAZHQJRFzEFW4mVoB03oA2gIR0Cv1zhKlHjIdX2UKGgGR0CR+Ir0rbxmaAdN6ANoCEdAr94bOAy2yHV9lChoBkdAiih7jLjgh2gHTegDaAhHQK/fI6gdwNt1fZQoaAZHQJSRucAiml9oB03oA2gIR0Cv5ikpiI+GdX2UKGgGR0CQAcj3mFJyaAdN6ANoCEdAr+jbNnoPkXV9lChoBkdAi6saUqx1PmgHTegDaAhHQK/tSR02cax1fZQoaAZHQIxNUxVQyh1oB03oA2gIR0Cv7eyM1jy4dX2UKGgGR0CRdqTjNpudaAdN6ANoCEdAr/QJt1p0wXV9lChoBkdAkM73NgSey2gHTegDaAhHQK/3Okdmxt51fZQoaAZHQJFwIgA6uGNoB03oA2gIR0Cv/ifYjB2wdX2UKGgGR0CR9uMVDa4+aAdN6ANoCEdAr/8w/xDst3V9lChoBkdAjO/RgZ0jkmgHTegDaAhHQLAC1wIt16p1fZQoaAZHQJGXLXtjTa1oB03oA2gIR0CwBCufNA1OdX2UKGgGR0CUhkQuVX3haAdN6ANoCEdAsAZvO7g883V9lChoBkdAkXCpAIIF/2gHTegDaAhHQLAGwg1WKdh1fZQoaAZHQJIcGN83MpxoB03oA2gIR0CwCdYpMHrydX2UKGgGR0CRHYYgaFVUaAdN6ANoCEdAsAvD2M85j3V9lChoBkdAkckjWK/EfmgHTegDaAhHQLAPRU4JeE91fZQoaAZHQJInQFkhA4ZoB03oA2gIR0CwD6XIhhYvdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4543aa69377e6eebf5e5522b9a52a7035c17685fc9df7fdbd7ecf729d009b23
|
3 |
+
size 1177432
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1092.789835059049, "std_reward": 192.13752780441766, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T15:20:02.632656"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c04b4a4f5045cb4490cee53f5094bcfa05a676dcc370c711c6e99bf225bb12ac
|
3 |
+
size 2136
|