FlavienDeseure commited on
Commit
b3de7b3
1 Parent(s): 42ba83f

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1092.79 +/- 192.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59f745c1a6516f3119284535ab735a8dfb66ef336d19d425476453c982c88b79
3
+ size 129256
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6d5d76dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe6d5d76e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe6d5d76ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe6d5d76f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe6d5cfd040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe6d5cfd0d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe6d5cfd160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe6d5cfd1f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe6d5cfd280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe6d5cfd310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6d5cfd3a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe6d5cfd430>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fe6d5d72930>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678111697885160819,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABeGJT9zNYM/ePZJv37FTb98vdo+JsDhv1UGez4SoMY+SwWcvzXTFzyci5++LmyXP+O2Jz9pjqi/drWpv9ihA75ujJW+4aWYP8yxFr/FaG6/MoSVvkAgjT/Kt7q9xpu3v89tTL8aiCc/Q0OqPt5xKj/CNLc/kNlAP+tJeb6XoBQ/Dg0gPxR4Tj2I5YE/Wk6AvxSogz3SwSDAiOJivX8yo7/FfM4/6l37vpC+jr9eIwg/yQAev3yidr64TcA+y26evzNqtr+/tqk+nKOwugOzY7/PbUy/GognP0NDqj7ecSo/clRsPX3hCr/bUVY/TsQ4vZoKij70TG4/qZhaPpR8Yb9txhA/noCUQJNWmT9xTQq9xeOQvyo+kz8GdNW+xM2EviJB9T+JNe0++IPpPpZg5zzLX64/six+vlFdZD9LiktAz21MvxqIJz9DQ6o++z/Av9jNoL0LLKU+5gypPm0WDj9NEsI/nWwEwEy49D6RkGk/x54WPl9dXkDrbMA+DMrsP3/3rr9TXN0+60ibv1ul77+WsdU/fbqaP5TpTz5gLBZA6+D4Po64Iz9xMym/3+n2P1hKoD/Il8O/mnRAwN5xKj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAoo9o1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbwGlPAAAAAA/bv+/AAAAAPyaCT0AAAAAWpz1PwAAAABW+Nc9AAAAAH1Q7j8AAAAA+fg2PQAAAAAuCQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASUFztgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEeNkT0AAAAA1Wv9vwAAAABSCtC9AAAAAHn69z8AAAAA/D2JPQAAAACCgPc/AAAAAHQOWz0AAAAAhE/gvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAObjj7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICwfAe+AAAAAKh14r8AAAAANEGBPAAAAACRf/k/AAAAAKUxAL4AAAAAeEPgPwAAAAC9Hgk9AAAAAMpmAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP+8Y2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqcUHvgAAAAC6SgDAAAAAAOu0rr0AAAAAA7rkPwAAAADBXZA9AAAAACXa8T8AAAAAeVULvgAAAAAnJeC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJRlOIwdsBSMAWyUTegDjAF0lEdArpsX7SApa3V9lChoBkdAllE+loDgZWgHTegDaAhHQK6hm5J9RaZ1fZQoaAZHQJTBMlruYyBoB03oA2gIR0CuojhkiD/VdX2UKGgGR0CV3NSSNfgKaAdN6ANoCEdArqjOC2+fy3V9lChoBkdAlY21EAo5P2gHTegDaAhHQK6pUzmfXf91fZQoaAZHQJR9k44p+c9oB03oA2gIR0Cuss6TGHYZdX2UKGgGR0CWLoPvrnklaAdN6ANoCEdArrN3Ilt0m3V9lChoBkdAk964nWrfcmgHTegDaAhHQK65kksz2vl1fZQoaAZHQInFZWeYlY5oB03oA2gIR0CuueibtqpMdX2UKGgGR0CSWTLMcIZ7aAdN6ANoCEdArsCdBt1p03V9lChoBkdAliTIcaOxS2gHTegDaAhHQK7BSNIbwSd1fZQoaAZHQJRbf1BdD6ZoB03oA2gIR0CuyBeotL+QdX2UKGgGR0CTBScFyJbdaAdN6ANoCEdArsidzhgmZ3V9lChoBkdAlNfIRujynWgHTegDaAhHQK7R48K5TZR1fZQoaAZHQJLSrZSNwR5oB03oA2gIR0Cu0ovQnhKldX2UKGgGR0CTG7Gd7OVxaAdN6ANoCEdArti/vF3pwHV9lChoBkdAkrDwEdNnG2gHTegDaAhHQK7ZHgKF7D51fZQoaAZHQJHHd3PiT+xoB03oA2gIR0Cu3/D2JzkqdX2UKGgGR0CTnufq5byIaAdN6ANoCEdAruCcahpQDXV9lChoBkdAkZqIB/7SA2gHTegDaAhHQK7olfixVyZ1fZQoaAZHQI6wvcWTHKhoB03oA2gIR0Cu6SyzollcdX2UKGgGR0CS74nJ1aGIaAdN6ANoCEdArvHm5z5oG3V9lChoBkdAkuPuyVv/BGgHTegDaAhHQK7ykA7xNIt1fZQoaAZHQIvs9vZRKpVoB03oA2gIR0Cu+J4zi0fHdX2UKGgGR0CTeg557gKnaAdN6ANoCEdArvj73sXzlXV9lChoBkdAkMvlAVwgkmgHTegDaAhHQK7/wzYVZcN1fZQoaAZHQJFRAdhiLEVoB03oA2gIR0CvAHDvVmSRdX2UKGgGR0CRB4CF9KEnaAdN6ANoCEdArwieTX8O1HV9lChoBkdAkbVgTAWSEGgHTegDaAhHQK8JMTUy57R1fZQoaAZHQE6t36hxo7FoB0uqaAhHQK8MwrksBhh1fZQoaAZHQJQYljSXt0FoB03oA2gIR0CvERxKYiPidX2UKGgGR0CTNQdRzijtaAdN6ANoCEdArxHFIZqEe3V9lChoBkdAkGO/pIMBqGgHTegDaAhHQK8XzoIOYpl1fZQoaAZHQJOawfOlfqpoB03oA2gIR0CvGnJRfnfVdX2UKGgGR0CTw2ylvZRLaAdN6ANoCEdArx7NhgE2YXV9lChoBkdAk5c1EZzgdmgHTegDaAhHQK8fdlcQiA51fZQoaAZHQJUx0kAxSHdoB03oA2gIR0CvKE6DGtITdX2UKGgGR0CS/SEpAlfJaAdN6ANoCEdAryv1sUIsy3V9lChoBkdAk5W7ONYKY2gHTegDaAhHQK8wYJaaCtl1fZQoaAZHQJLMLVUdaMdoB03oA2gIR0CvMQbxusLfdX2UKGgGR0CUJWbutwJgaAdN6ANoCEdArzcJAfMfR3V9lChoBkdAlQi0sBhhIGgHTegDaAhHQK85svHLidd1fZQoaAZHQJM35azNUwVoB03oA2gIR0CvPg8NQTEjdX2UKGgGR0CTgWcnmaH9aAdN6ANoCEdArz60rVe8f3V9lChoBkdAkrkFVPva12gHTegDaAhHQK9H1pGFzuF1fZQoaAZHQJK7+p84PwxoB03oA2gIR0CvSxpKSPludX2UKGgGR0CTOvGOuJUHaAdN6ANoCEdAr0+CwwCbMHV9lChoBkdAkyRraufVZ2gHTegDaAhHQK9QJw4KhL51fZQoaAZHQJOSi+6Ae7toB03oA2gIR0CvVpKNyYG/dX2UKGgGR0CUL1jLSuyNaAdN6ANoCEdAr1mJF3IMjXV9lChoBkdAkv3q+FlCkWgHTegDaAhHQK9efjQRf4R1fZQoaAZHQJJm9yimEXdoB03oA2gIR0CvX4sVk+X7dX2UKGgGR0CTbEVKPGQ0aAdN6ANoCEdAr2i6ziS7oXV9lChoBkdAlJKkZBLPEGgHTegDaAhHQK9rcgK4QSV1fZQoaAZHQJPm2QHRkVhoB03oA2gIR0Cvb93MQmNSdX2UKGgGR0CTcM7KJVKgaAdN6ANoCEdAr3CGY4Qz13V9lChoBkdAkx9X6yjYZmgHTegDaAhHQK92uAI6bON1fZQoaAZHQJKHxZ+x4Y9oB03oA2gIR0CveWyOq//OdX2UKGgGR0CS6TbLEDQraAdN6ANoCEdAr37FWhh6SnV9lChoBkdAkob1J17pmmgHTegDaAhHQK9/tBAv+Ox1fZQoaAZHQJXEpA6dUbVoB03oA2gIR0CviDlwtJ4CdX2UKGgGR0CVSwQrMC9zaAdN6ANoCEdAr4r6H2ys0nV9lChoBkdAlV/Lehwl0GgHTegDaAhHQK+PTIdU83d1fZQoaAZHQJT9Pdi2DxtoB03oA2gIR0Cvj+fvv0AcdX2UKGgGR0CRn9drO7g9aAdN6ANoCEdAr5XkjJMg2nV9lChoBkdAk7bNLpRoAWgHTegDaAhHQK+YljOs1bd1fZQoaAZHQJMqwH/tICloB03oA2gIR0Cvnp/gaWHDdX2UKGgGR0CVQDcqvvBraAdN6ANoCEdAr5+f6j323HV9lChoBkdAk2J9Y8uBc2gHTegDaAhHQK+nsFj/dZd1fZQoaAZHQJJ09jQRf4RoB03oA2gIR0Cvqm1VYISldX2UKGgGR0CTFwt+CsfaaAdN6ANoCEdAr67NyJbdJ3V9lChoBkdAkpFKr7wazmgHTegDaAhHQK+vdd+ocaR1fZQoaAZHQI9sNzhgmZ5oB03oA2gIR0CvtWkpZwGXdX2UKGgGR0CMa8LsKLKnaAdN6ANoCEdAr7gfhsImgXV9lChoBkdAkmnFKK5082gHTegDaAhHQK++PrE9+w11fZQoaAZHQI+dlr433pRoB03oA2gIR0CvvzkfT1CgdX2UKGgGR0CUjQm1YyO8aAdN6ANoCEdAr8bLgsK9f3V9lChoBkdAk5+486mwaGgHTegDaAhHQK/JczzErG11fZQoaAZHQJNwbEaVD8doB03oA2gIR0CvzcukDZDidX2UKGgGR0CRFiNFz+3paAdN6ANoCEdAr85wL1EmY3V9lChoBkdAk3md5UtI1GgHTegDaAhHQK/Ue3vQWvd1fZQoaAZHQJRFzEFW4mVoB03oA2gIR0Cv1zhKlHjIdX2UKGgGR0CR+Ir0rbxmaAdN6ANoCEdAr94bOAy2yHV9lChoBkdAiih7jLjgh2gHTegDaAhHQK/fI6gdwNt1fZQoaAZHQJSRucAiml9oB03oA2gIR0Cv5ikpiI+GdX2UKGgGR0CQAcj3mFJyaAdN6ANoCEdAr+jbNnoPkXV9lChoBkdAi6saUqx1PmgHTegDaAhHQK/tSR02cax1fZQoaAZHQIxNUxVQyh1oB03oA2gIR0Cv7eyM1jy4dX2UKGgGR0CRdqTjNpudaAdN6ANoCEdAr/QJt1p0wXV9lChoBkdAkM73NgSey2gHTegDaAhHQK/3Okdmxt51fZQoaAZHQJFwIgA6uGNoB03oA2gIR0Cv/ifYjB2wdX2UKGgGR0CR9uMVDa4+aAdN6ANoCEdAr/8w/xDst3V9lChoBkdAjO/RgZ0jkmgHTegDaAhHQLAC1wIt16p1fZQoaAZHQJGXLXtjTa1oB03oA2gIR0CwBCufNA1OdX2UKGgGR0CUhkQuVX3haAdN6ANoCEdAsAZvO7g883V9lChoBkdAkXCpAIIF/2gHTegDaAhHQLAGwg1WKdh1fZQoaAZHQJIcGN83MpxoB03oA2gIR0CwCdYpMHrydX2UKGgGR0CRHYYgaFVUaAdN6ANoCEdAsAvD2M85j3V9lChoBkdAkckjWK/EfmgHTegDaAhHQLAPRU4JeE91fZQoaAZHQJInQFkhA4ZoB03oA2gIR0CwD6XIhhYvdWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed75bda4db22f08a7a55de5729faa03b2fc833accd6233cd777fc72ab79359df
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bac3cd9ddcfda87d7b06f3b91ee467e7eecf8710b25abde0149566a231f21814
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6d5d76dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe6d5d76e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe6d5d76ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe6d5d76f70>", "_build": "<function ActorCriticPolicy._build at 0x7fe6d5cfd040>", "forward": "<function ActorCriticPolicy.forward at 0x7fe6d5cfd0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe6d5cfd160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe6d5cfd1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe6d5cfd280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe6d5cfd310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6d5cfd3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe6d5cfd430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe6d5d72930>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678111697885160819, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABeGJT9zNYM/ePZJv37FTb98vdo+JsDhv1UGez4SoMY+SwWcvzXTFzyci5++LmyXP+O2Jz9pjqi/drWpv9ihA75ujJW+4aWYP8yxFr/FaG6/MoSVvkAgjT/Kt7q9xpu3v89tTL8aiCc/Q0OqPt5xKj/CNLc/kNlAP+tJeb6XoBQ/Dg0gPxR4Tj2I5YE/Wk6AvxSogz3SwSDAiOJivX8yo7/FfM4/6l37vpC+jr9eIwg/yQAev3yidr64TcA+y26evzNqtr+/tqk+nKOwugOzY7/PbUy/GognP0NDqj7ecSo/clRsPX3hCr/bUVY/TsQ4vZoKij70TG4/qZhaPpR8Yb9txhA/noCUQJNWmT9xTQq9xeOQvyo+kz8GdNW+xM2EviJB9T+JNe0++IPpPpZg5zzLX64/six+vlFdZD9LiktAz21MvxqIJz9DQ6o++z/Av9jNoL0LLKU+5gypPm0WDj9NEsI/nWwEwEy49D6RkGk/x54WPl9dXkDrbMA+DMrsP3/3rr9TXN0+60ibv1ul77+WsdU/fbqaP5TpTz5gLBZA6+D4Po64Iz9xMym/3+n2P1hKoD/Il8O/mnRAwN5xKj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAoo9o1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbwGlPAAAAAA/bv+/AAAAAPyaCT0AAAAAWpz1PwAAAABW+Nc9AAAAAH1Q7j8AAAAA+fg2PQAAAAAuCQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASUFztgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEeNkT0AAAAA1Wv9vwAAAABSCtC9AAAAAHn69z8AAAAA/D2JPQAAAACCgPc/AAAAAHQOWz0AAAAAhE/gvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAObjj7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICwfAe+AAAAAKh14r8AAAAANEGBPAAAAACRf/k/AAAAAKUxAL4AAAAAeEPgPwAAAAC9Hgk9AAAAAMpmAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACP+8Y2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqcUHvgAAAAC6SgDAAAAAAOu0rr0AAAAAA7rkPwAAAADBXZA9AAAAACXa8T8AAAAAeVULvgAAAAAnJeC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJRlOIwdsBSMAWyUTegDjAF0lEdArpsX7SApa3V9lChoBkdAllE+loDgZWgHTegDaAhHQK6hm5J9RaZ1fZQoaAZHQJTBMlruYyBoB03oA2gIR0CuojhkiD/VdX2UKGgGR0CV3NSSNfgKaAdN6ANoCEdArqjOC2+fy3V9lChoBkdAlY21EAo5P2gHTegDaAhHQK6pUzmfXf91fZQoaAZHQJR9k44p+c9oB03oA2gIR0Cuss6TGHYZdX2UKGgGR0CWLoPvrnklaAdN6ANoCEdArrN3Ilt0m3V9lChoBkdAk964nWrfcmgHTegDaAhHQK65kksz2vl1fZQoaAZHQInFZWeYlY5oB03oA2gIR0CuueibtqpMdX2UKGgGR0CSWTLMcIZ7aAdN6ANoCEdArsCdBt1p03V9lChoBkdAliTIcaOxS2gHTegDaAhHQK7BSNIbwSd1fZQoaAZHQJRbf1BdD6ZoB03oA2gIR0CuyBeotL+QdX2UKGgGR0CTBScFyJbdaAdN6ANoCEdArsidzhgmZ3V9lChoBkdAlNfIRujynWgHTegDaAhHQK7R48K5TZR1fZQoaAZHQJLSrZSNwR5oB03oA2gIR0Cu0ovQnhKldX2UKGgGR0CTG7Gd7OVxaAdN6ANoCEdArti/vF3pwHV9lChoBkdAkrDwEdNnG2gHTegDaAhHQK7ZHgKF7D51fZQoaAZHQJHHd3PiT+xoB03oA2gIR0Cu3/D2JzkqdX2UKGgGR0CTnufq5byIaAdN6ANoCEdAruCcahpQDXV9lChoBkdAkZqIB/7SA2gHTegDaAhHQK7olfixVyZ1fZQoaAZHQI6wvcWTHKhoB03oA2gIR0Cu6SyzollcdX2UKGgGR0CS74nJ1aGIaAdN6ANoCEdArvHm5z5oG3V9lChoBkdAkuPuyVv/BGgHTegDaAhHQK7ykA7xNIt1fZQoaAZHQIvs9vZRKpVoB03oA2gIR0Cu+J4zi0fHdX2UKGgGR0CTeg557gKnaAdN6ANoCEdArvj73sXzlXV9lChoBkdAkMvlAVwgkmgHTegDaAhHQK7/wzYVZcN1fZQoaAZHQJFRAdhiLEVoB03oA2gIR0CvAHDvVmSRdX2UKGgGR0CRB4CF9KEnaAdN6ANoCEdArwieTX8O1HV9lChoBkdAkbVgTAWSEGgHTegDaAhHQK8JMTUy57R1fZQoaAZHQE6t36hxo7FoB0uqaAhHQK8MwrksBhh1fZQoaAZHQJQYljSXt0FoB03oA2gIR0CvERxKYiPidX2UKGgGR0CTNQdRzijtaAdN6ANoCEdArxHFIZqEe3V9lChoBkdAkGO/pIMBqGgHTegDaAhHQK8XzoIOYpl1fZQoaAZHQJOawfOlfqpoB03oA2gIR0CvGnJRfnfVdX2UKGgGR0CTw2ylvZRLaAdN6ANoCEdArx7NhgE2YXV9lChoBkdAk5c1EZzgdmgHTegDaAhHQK8fdlcQiA51fZQoaAZHQJUx0kAxSHdoB03oA2gIR0CvKE6DGtITdX2UKGgGR0CS/SEpAlfJaAdN6ANoCEdAryv1sUIsy3V9lChoBkdAk5W7ONYKY2gHTegDaAhHQK8wYJaaCtl1fZQoaAZHQJLMLVUdaMdoB03oA2gIR0CvMQbxusLfdX2UKGgGR0CUJWbutwJgaAdN6ANoCEdArzcJAfMfR3V9lChoBkdAlQi0sBhhIGgHTegDaAhHQK85svHLidd1fZQoaAZHQJM35azNUwVoB03oA2gIR0CvPg8NQTEjdX2UKGgGR0CTgWcnmaH9aAdN6ANoCEdArz60rVe8f3V9lChoBkdAkrkFVPva12gHTegDaAhHQK9H1pGFzuF1fZQoaAZHQJK7+p84PwxoB03oA2gIR0CvSxpKSPludX2UKGgGR0CTOvGOuJUHaAdN6ANoCEdAr0+CwwCbMHV9lChoBkdAkyRraufVZ2gHTegDaAhHQK9QJw4KhL51fZQoaAZHQJOSi+6Ae7toB03oA2gIR0CvVpKNyYG/dX2UKGgGR0CUL1jLSuyNaAdN6ANoCEdAr1mJF3IMjXV9lChoBkdAkv3q+FlCkWgHTegDaAhHQK9efjQRf4R1fZQoaAZHQJJm9yimEXdoB03oA2gIR0CvX4sVk+X7dX2UKGgGR0CTbEVKPGQ0aAdN6ANoCEdAr2i6ziS7oXV9lChoBkdAlJKkZBLPEGgHTegDaAhHQK9rcgK4QSV1fZQoaAZHQJPm2QHRkVhoB03oA2gIR0Cvb93MQmNSdX2UKGgGR0CTcM7KJVKgaAdN6ANoCEdAr3CGY4Qz13V9lChoBkdAkx9X6yjYZmgHTegDaAhHQK92uAI6bON1fZQoaAZHQJKHxZ+x4Y9oB03oA2gIR0CveWyOq//OdX2UKGgGR0CS6TbLEDQraAdN6ANoCEdAr37FWhh6SnV9lChoBkdAkob1J17pmmgHTegDaAhHQK9/tBAv+Ox1fZQoaAZHQJXEpA6dUbVoB03oA2gIR0CviDlwtJ4CdX2UKGgGR0CVSwQrMC9zaAdN6ANoCEdAr4r6H2ys0nV9lChoBkdAlV/Lehwl0GgHTegDaAhHQK+PTIdU83d1fZQoaAZHQJT9Pdi2DxtoB03oA2gIR0Cvj+fvv0AcdX2UKGgGR0CRn9drO7g9aAdN6ANoCEdAr5XkjJMg2nV9lChoBkdAk7bNLpRoAWgHTegDaAhHQK+YljOs1bd1fZQoaAZHQJMqwH/tICloB03oA2gIR0Cvnp/gaWHDdX2UKGgGR0CVQDcqvvBraAdN6ANoCEdAr5+f6j323HV9lChoBkdAk2J9Y8uBc2gHTegDaAhHQK+nsFj/dZd1fZQoaAZHQJJ09jQRf4RoB03oA2gIR0Cvqm1VYISldX2UKGgGR0CTFwt+CsfaaAdN6ANoCEdAr67NyJbdJ3V9lChoBkdAkpFKr7wazmgHTegDaAhHQK+vdd+ocaR1fZQoaAZHQI9sNzhgmZ5oB03oA2gIR0CvtWkpZwGXdX2UKGgGR0CMa8LsKLKnaAdN6ANoCEdAr7gfhsImgXV9lChoBkdAkmnFKK5082gHTegDaAhHQK++PrE9+w11fZQoaAZHQI+dlr433pRoB03oA2gIR0CvvzkfT1CgdX2UKGgGR0CUjQm1YyO8aAdN6ANoCEdAr8bLgsK9f3V9lChoBkdAk5+486mwaGgHTegDaAhHQK/JczzErG11fZQoaAZHQJNwbEaVD8doB03oA2gIR0CvzcukDZDidX2UKGgGR0CRFiNFz+3paAdN6ANoCEdAr85wL1EmY3V9lChoBkdAk3md5UtI1GgHTegDaAhHQK/Ue3vQWvd1fZQoaAZHQJRFzEFW4mVoB03oA2gIR0Cv1zhKlHjIdX2UKGgGR0CR+Ir0rbxmaAdN6ANoCEdAr94bOAy2yHV9lChoBkdAiih7jLjgh2gHTegDaAhHQK/fI6gdwNt1fZQoaAZHQJSRucAiml9oB03oA2gIR0Cv5ikpiI+GdX2UKGgGR0CQAcj3mFJyaAdN6ANoCEdAr+jbNnoPkXV9lChoBkdAi6saUqx1PmgHTegDaAhHQK/tSR02cax1fZQoaAZHQIxNUxVQyh1oB03oA2gIR0Cv7eyM1jy4dX2UKGgGR0CRdqTjNpudaAdN6ANoCEdAr/QJt1p0wXV9lChoBkdAkM73NgSey2gHTegDaAhHQK/3Okdmxt51fZQoaAZHQJFwIgA6uGNoB03oA2gIR0Cv/ifYjB2wdX2UKGgGR0CR9uMVDa4+aAdN6ANoCEdAr/8w/xDst3V9lChoBkdAjO/RgZ0jkmgHTegDaAhHQLAC1wIt16p1fZQoaAZHQJGXLXtjTa1oB03oA2gIR0CwBCufNA1OdX2UKGgGR0CUhkQuVX3haAdN6ANoCEdAsAZvO7g883V9lChoBkdAkXCpAIIF/2gHTegDaAhHQLAGwg1WKdh1fZQoaAZHQJIcGN83MpxoB03oA2gIR0CwCdYpMHrydX2UKGgGR0CRHYYgaFVUaAdN6ANoCEdAsAvD2M85j3V9lChoBkdAkckjWK/EfmgHTegDaAhHQLAPRU4JeE91fZQoaAZHQJInQFkhA4ZoB03oA2gIR0CwD6XIhhYvdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4543aa69377e6eebf5e5522b9a52a7035c17685fc9df7fdbd7ecf729d009b23
3
+ size 1177432
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1092.789835059049, "std_reward": 192.13752780441766, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T15:20:02.632656"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c04b4a4f5045cb4490cee53f5094bcfa05a676dcc370c711c6e99bf225bb12ac
3
+ size 2136