FlavienDeseure
commited on
Commit
•
24fae8c
1
Parent(s):
0a007d7
PPO LunarLander
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +92 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: LunarLander-v2
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 277.79 +/- 19.71
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **LunarLander-v2** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **LunarLander-v2** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6471274280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6471274310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f64712743a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6471274430>", "_build": "<function ActorCriticPolicy._build at 0x7f64712744c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6471274550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f64712745e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6471274670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6471274700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6471274790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6471274820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f64712748b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f647126cab0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677920802857465362, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPfIHA4+uckCUhpRSlIwBbJRL/owBdJRHQJAnq0E5hjR1fZQoaAZoCWgPQwjhQbPr3oltQJSGlFKUaBVL5WgWR0CQJ9y/KyOadX2UKGgGaAloD0MI8piByjgwcUCUhpRSlGgVTQABaBZHQJAoPrIHTql1fZQoaAZoCWgPQwhsJXSXRNFxQJSGlFKUaBVNBQFoFkdAkChRZQpF1HV9lChoBmgJaA9DCP30nzW/D3FAlIaUUpRoFU0JAWgWR0CQKIBbfP5YdX2UKGgGaAloD0MIYRqGjwj9ckCUhpRSlGgVS/RoFkdAkCiUcCHRC3V9lChoBmgJaA9DCJpEveBT+G9AlIaUUpRoFUvwaBZHQJAon5ZbILh1fZQoaAZoCWgPQwjJ5T+kH4BwQJSGlFKUaBVNJAFoFkdAkCmG9Htnf3V9lChoBmgJaA9DCPIKRE+KinBAlIaUUpRoFUvvaBZHQJAqMpgCwKV1fZQoaAZoCWgPQwjezOhHg1NyQJSGlFKUaBVL6mgWR0CQKpz19ORDdX2UKGgGaAloD0MIKUF/oYdVcECUhpRSlGgVS+5oFkdAkCs23WnTAnV9lChoBmgJaA9DCAGloUYhHXBAlIaUUpRoFUvvaBZHQJAreHSF49p1fZQoaAZoCWgPQwijXBq/8IZxQJSGlFKUaBVL9WgWR0CQLRux8lXzdX2UKGgGaAloD0MIHNDSFSyJcUCUhpRSlGgVS/5oFkdAkC01UEPlMnV9lChoBmgJaA9DCHVY4ZZPdXFAlIaUUpRoFUv8aBZHQJAtl4Y77sR1fZQoaAZoCWgPQwjRsBh1LdJsQJSGlFKUaBVL8mgWR0CQLjUnXumadX2UKGgGaAloD0MIQQ+1bVhMcUCUhpRSlGgVS+9oFkdAkC5iQDFId3V9lChoBmgJaA9DCHrkDwbexnBAlIaUUpRoFU0uAWgWR0CQLyXTEzfrdX2UKGgGaAloD0MIrIvbaID/ckCUhpRSlGgVTQABaBZHQJAvbEMspXp1fZQoaAZoCWgPQwgBaf8DrBJuQJSGlFKUaBVL9WgWR0CQL4Ql8gIQdX2UKGgGaAloD0MI9S7ejxvkckCUhpRSlGgVTRIBaBZHQJAwDbBXS0B1fZQoaAZoCWgPQwiQuwhTVDJzQJSGlFKUaBVNIgFoFkdAkDDBISUTtnV9lChoBmgJaA9DCO9Z12g5lnFAlIaUUpRoFU0RAWgWR0CQMa3sXzlLdX2UKGgGaAloD0MI2/tUFdrdcECUhpRSlGgVTQgBaBZHQJAyUZtNzsB1fZQoaAZoCWgPQwgR/dr6qeRxQJSGlFKUaBVNHgFoFkdAkDOgX668QXV9lChoBmgJaA9DCHTQJRx6025AlIaUUpRoFU0cAWgWR0CQND508vEkdX2UKGgGaAloD0MIQPuRIjLXckCUhpRSlGgVS+xoFkdAkDSkU47zTXV9lChoBmgJaA9DCLWK/tBM1W9AlIaUUpRoFU0rAWgWR0CQNQaBqbjMdX2UKGgGaAloD0MIG7luSvl3b0CUhpRSlGgVTQ8BaBZHQJA14MrmQsB1fZQoaAZoCWgPQwjjGTT0z/ZxQJSGlFKUaBVNGAFoFkdAkDaggxJumHV9lChoBmgJaA9DCAQeGEA4tHJAlIaUUpRoFUvpaBZHQJA3DFaSs8x1fZQoaAZoCWgPQwhETfT5KO5vQJSGlFKUaBVNEAFoFkdAkDgbM9r433V9lChoBmgJaA9DCDwtP3CVcm9AlIaUUpRoFU0wAWgWR0CQODmxMWXUdX2UKGgGaAloD0MI2/0qwHe/ckCUhpRSlGgVTS8BaBZHQJA4WwOe8PF1fZQoaAZoCWgPQwiLUkKw6oRyQJSGlFKUaBVNGAFoFkdAkDihZlnRLXV9lChoBmgJaA9DCPllMEbkynBAlIaUUpRoFU0QAWgWR0CQOPuUD+zddX2UKGgGaAloD0MIj1N0JJc2b0CUhpRSlGgVTQABaBZHQJA5NjYqXnh1fZQoaAZoCWgPQwhpboWwmjdzQJSGlFKUaBVNAAFoFkdAkDn5nDiwS3V9lChoBmgJaA9DCFmHo6v0r3FAlIaUUpRoFUv2aBZHQJA6OtuDSPV1fZQoaAZoCWgPQwjV6UDW021xQJSGlFKUaBVL8mgWR0CQOzGNJe3QdX2UKGgGaAloD0MIcm2oGOeJckCUhpRSlGgVS+ZoFkdAkFXsG9pRGnV9lChoBmgJaA9DCAd6qG1DF25AlIaUUpRoFUv5aBZHQJBXGsySFGp1fZQoaAZoCWgPQwjrw3qjVp5uQJSGlFKUaBVL82gWR0CQV7A5Jbt7dX2UKGgGaAloD0MIEY3uIPbzcECUhpRSlGgVTTIBaBZHQJBYb9hqj8F1fZQoaAZoCWgPQwh8LH3oQoNyQJSGlFKUaBVL22gWR0CQWN0TURWcdX2UKGgGaAloD0MIwktw6kMWcECUhpRSlGgVTQYBaBZHQJBZVM495hV1fZQoaAZoCWgPQwhOQ1Thz4xyQJSGlFKUaBVNHwFoFkdAkFm4fr8iwHV9lChoBmgJaA9DCGBzDp5J53BAlIaUUpRoFUv4aBZHQJBZ+Oearm11fZQoaAZoCWgPQwhljuVddXpzQJSGlFKUaBVL22gWR0CQWgFpwjt5dX2UKGgGaAloD0MIca32sBeTb0CUhpRSlGgVS+hoFkdAkFond0q6OHV9lChoBmgJaA9DCBf1Se5w2XBAlIaUUpRoFU0OAWgWR0CQWtu/k/8mdX2UKGgGaAloD0MItFvLZPh0ckCUhpRSlGgVS+loFkdAkFuqcurZJ3V9lChoBmgJaA9DCFKZYg6CYHBAlIaUUpRoFU0GAWgWR0CQXDxRVIZqdX2UKGgGaAloD0MIx0YgXtfccECUhpRSlGgVTVYBaBZHQJBcqE25xzd1fZQoaAZoCWgPQwhOet/4GmZyQJSGlFKUaBVNAAFoFkdAkF1L0Bfa6HV9lChoBmgJaA9DCEKvP4lPZ3BAlIaUUpRoFU08AWgWR0CQX0SThYNidX2UKGgGaAloD0MIC5jArTvBckCUhpRSlGgVS+ZoFkdAkF9YukDZDnV9lChoBmgJaA9DCC457pROZ3BAlIaUUpRoFU0UAWgWR0CQX18DSw4bdX2UKGgGaAloD0MIK8O4G0SpckCUhpRSlGgVTQoBaBZHQJBfp4rz5Gl1fZQoaAZoCWgPQwihnj4CP5RyQJSGlFKUaBVL9GgWR0CQYBj/+85CdX2UKGgGaAloD0MIkQpjC0EccUCUhpRSlGgVS9doFkdAkGBzrVvuPXV9lChoBmgJaA9DCDF8REwJ+mFAlIaUUpRoFU3oA2gWR0CQYRjx0+1SdX2UKGgGaAloD0MISYPb2oJ9cECUhpRSlGgVS/9oFkdAkGE+w5eZ5XV9lChoBmgJaA9DCBk8TPtmU3BAlIaUUpRoFU0JAWgWR0CQYbra/RE4dX2UKGgGaAloD0MIy7+WV27WckCUhpRSlGgVTR8BaBZHQJBhxSLqD9R1fZQoaAZoCWgPQwjo3VhQmPZtQJSGlFKUaBVL9WgWR0CQYgKeTV2BdX2UKGgGaAloD0MIsiyY+CPIb0CUhpRSlGgVS/xoFkdAkGLMLWqcVnV9lChoBmgJaA9DCKX5Y1pb8nFAlIaUUpRoFUv9aBZHQJBjVNBWxQl1fZQoaAZoCWgPQwiFl+DUB1hyQJSGlFKUaBVNAAFoFkdAkGPXRsuWbHV9lChoBmgJaA9DCA3DR8RUpnFAlIaUUpRoFUv5aBZHQJBkPnW8RL91fZQoaAZoCWgPQwjRyyiW20xwQJSGlFKUaBVL3GgWR0CQZVzRx95RdX2UKGgGaAloD0MIXeFdLmKXbkCUhpRSlGgVS/1oFkdAkGZoN/e+EnV9lChoBmgJaA9DCDuMSX+vanJAlIaUUpRoFU0OAWgWR0CQZtR0U47zdX2UKGgGaAloD0MI9bnaiv1UckCUhpRSlGgVS9toFkdAkGc69kBjnXV9lChoBmgJaA9DCAlszsEz+G5AlIaUUpRoFU0YAWgWR0CQZ5gIhQnAdX2UKGgGaAloD0MIGRu62Z8gcECUhpRSlGgVS/ZoFkdAkGg3maH9FXV9lChoBmgJaA9DCC51kNcD4XJAlIaUUpRoFUvwaBZHQJBooA4n4PB1fZQoaAZoCWgPQwhQNA9gURxxQJSGlFKUaBVL8GgWR0CQaPlchTwVdX2UKGgGaAloD0MIJAot6/4jbkCUhpRSlGgVTT0BaBZHQJBpRpi7TUl1fZQoaAZoCWgPQwhc5J6ubvpwQJSGlFKUaBVNNgFoFkdAkGl1lf7aZnV9lChoBmgJaA9DCPuT+NyJAHBAlIaUUpRoFU0KAWgWR0CQaXZmI0qIdX2UKGgGaAloD0MIdGGkF/XscECUhpRSlGgVS+9oFkdAkGnm2b5M13V9lChoBmgJaA9DCDUHCOboZHBAlIaUUpRoFUvnaBZHQJBqPEaVD8d1fZQoaAZoCWgPQwh+VpkpbVFwQJSGlFKUaBVNBgFoFkdAkGuBje9BbHV9lChoBmgJaA9DCMu9wKzQ+nBAlIaUUpRoFU0VAWgWR0CQbFz19ORDdX2UKGgGaAloD0MIwHtHjcmecECUhpRSlGgVS+NoFkdAkGz9mg8KX3V9lChoBmgJaA9DCPQZUG9G/nBAlIaUUpRoFU0MAWgWR0CQbTssQNCrdX2UKGgGaAloD0MIaD7nbpfacUCUhpRSlGgVS+xoFkdAkG2lqnFYMnV9lChoBmgJaA9DCN6tLNGZfXFAlIaUUpRoFU0CAWgWR0CQbqSPluFYdX2UKGgGaAloD0MIeHsQAvKscUCUhpRSlGgVS+JoFkdAkG8PF72L53V9lChoBmgJaA9DCAySPq3iLXNAlIaUUpRoFUvZaBZHQJBvFsl9jPR1fZQoaAZoCWgPQwjgDz//fa9wQJSGlFKUaBVL2GgWR0CQcAhIOH32dX2UKGgGaAloD0MILCy4H3ByckCUhpRSlGgVS+5oFkdAkHA+VcD8tXV9lChoBmgJaA9DCDnRrkKK+HJAlIaUUpRoFUv1aBZHQJBwdLkCFK11fZQoaAZoCWgPQwgIWKt2zWZzQJSGlFKUaBVNHgFoFkdAkHCHkHUtqnV9lChoBmgJaA9DCJBPyM5bx3BAlIaUUpRoFU1CAWgWR0CQcPHPu5SWdX2UKGgGaAloD0MIvR3htGACbkCUhpRSlGgVS/1oFkdAkHFxG6PKdXV9lChoBmgJaA9DCJBMh05PtHJAlIaUUpRoFUvoaBZHQJByMDmr8zh1fZQoaAZoCWgPQwi5HK9AdK9tQJSGlFKUaBVL3GgWR0CQcrw9JSR9dX2UKGgGaAloD0MIbypSYazhcECUhpRSlGgVTVwBaBZHQJBzIWhysCF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6a881f10fab7f45a07ae29b8baae8e97a922c46db8e6857937087c97fa43339
|
3 |
+
size 146552
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6471274280>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6471274310>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f64712743a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6471274430>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f64712744c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6471274550>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f64712745e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6471274670>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6471274700>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6471274790>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6471274820>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f64712748b0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f647126cab0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 1,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1677920802857465362,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": null,
|
59 |
+
"_last_episode_starts": {
|
60 |
+
":type:": "<class 'numpy.ndarray'>",
|
61 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
62 |
+
},
|
63 |
+
"_last_original_obs": null,
|
64 |
+
"_episode_num": 0,
|
65 |
+
"use_sde": false,
|
66 |
+
"sde_sample_freq": -1,
|
67 |
+
"_current_progress_remaining": -0.015808000000000044,
|
68 |
+
"ep_info_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVTRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPfIHA4+uckCUhpRSlIwBbJRL/owBdJRHQJAnq0E5hjR1fZQoaAZoCWgPQwjhQbPr3oltQJSGlFKUaBVL5WgWR0CQJ9y/KyOadX2UKGgGaAloD0MI8piByjgwcUCUhpRSlGgVTQABaBZHQJAoPrIHTql1fZQoaAZoCWgPQwhsJXSXRNFxQJSGlFKUaBVNBQFoFkdAkChRZQpF1HV9lChoBmgJaA9DCP30nzW/D3FAlIaUUpRoFU0JAWgWR0CQKIBbfP5YdX2UKGgGaAloD0MIYRqGjwj9ckCUhpRSlGgVS/RoFkdAkCiUcCHRC3V9lChoBmgJaA9DCJpEveBT+G9AlIaUUpRoFUvwaBZHQJAon5ZbILh1fZQoaAZoCWgPQwjJ5T+kH4BwQJSGlFKUaBVNJAFoFkdAkCmG9Htnf3V9lChoBmgJaA9DCPIKRE+KinBAlIaUUpRoFUvvaBZHQJAqMpgCwKV1fZQoaAZoCWgPQwjezOhHg1NyQJSGlFKUaBVL6mgWR0CQKpz19ORDdX2UKGgGaAloD0MIKUF/oYdVcECUhpRSlGgVS+5oFkdAkCs23WnTAnV9lChoBmgJaA9DCAGloUYhHXBAlIaUUpRoFUvvaBZHQJAreHSF49p1fZQoaAZoCWgPQwijXBq/8IZxQJSGlFKUaBVL9WgWR0CQLRux8lXzdX2UKGgGaAloD0MIHNDSFSyJcUCUhpRSlGgVS/5oFkdAkC01UEPlMnV9lChoBmgJaA9DCHVY4ZZPdXFAlIaUUpRoFUv8aBZHQJAtl4Y77sR1fZQoaAZoCWgPQwjRsBh1LdJsQJSGlFKUaBVL8mgWR0CQLjUnXumadX2UKGgGaAloD0MIQQ+1bVhMcUCUhpRSlGgVS+9oFkdAkC5iQDFId3V9lChoBmgJaA9DCHrkDwbexnBAlIaUUpRoFU0uAWgWR0CQLyXTEzfrdX2UKGgGaAloD0MIrIvbaID/ckCUhpRSlGgVTQABaBZHQJAvbEMspXp1fZQoaAZoCWgPQwgBaf8DrBJuQJSGlFKUaBVL9WgWR0CQL4Ql8gIQdX2UKGgGaAloD0MI9S7ejxvkckCUhpRSlGgVTRIBaBZHQJAwDbBXS0B1fZQoaAZoCWgPQwiQuwhTVDJzQJSGlFKUaBVNIgFoFkdAkDDBISUTtnV9lChoBmgJaA9DCO9Z12g5lnFAlIaUUpRoFU0RAWgWR0CQMa3sXzlLdX2UKGgGaAloD0MI2/tUFdrdcECUhpRSlGgVTQgBaBZHQJAyUZtNzsB1fZQoaAZoCWgPQwgR/dr6qeRxQJSGlFKUaBVNHgFoFkdAkDOgX668QXV9lChoBmgJaA9DCHTQJRx6025AlIaUUpRoFU0cAWgWR0CQND508vEkdX2UKGgGaAloD0MIQPuRIjLXckCUhpRSlGgVS+xoFkdAkDSkU47zTXV9lChoBmgJaA9DCLWK/tBM1W9AlIaUUpRoFU0rAWgWR0CQNQaBqbjMdX2UKGgGaAloD0MIG7luSvl3b0CUhpRSlGgVTQ8BaBZHQJA14MrmQsB1fZQoaAZoCWgPQwjjGTT0z/ZxQJSGlFKUaBVNGAFoFkdAkDaggxJumHV9lChoBmgJaA9DCAQeGEA4tHJAlIaUUpRoFUvpaBZHQJA3DFaSs8x1fZQoaAZoCWgPQwhETfT5KO5vQJSGlFKUaBVNEAFoFkdAkDgbM9r433V9lChoBmgJaA9DCDwtP3CVcm9AlIaUUpRoFU0wAWgWR0CQODmxMWXUdX2UKGgGaAloD0MI2/0qwHe/ckCUhpRSlGgVTS8BaBZHQJA4WwOe8PF1fZQoaAZoCWgPQwiLUkKw6oRyQJSGlFKUaBVNGAFoFkdAkDihZlnRLXV9lChoBmgJaA9DCPllMEbkynBAlIaUUpRoFU0QAWgWR0CQOPuUD+zddX2UKGgGaAloD0MIj1N0JJc2b0CUhpRSlGgVTQABaBZHQJA5NjYqXnh1fZQoaAZoCWgPQwhpboWwmjdzQJSGlFKUaBVNAAFoFkdAkDn5nDiwS3V9lChoBmgJaA9DCFmHo6v0r3FAlIaUUpRoFUv2aBZHQJA6OtuDSPV1fZQoaAZoCWgPQwjV6UDW021xQJSGlFKUaBVL8mgWR0CQOzGNJe3QdX2UKGgGaAloD0MIcm2oGOeJckCUhpRSlGgVS+ZoFkdAkFXsG9pRGnV9lChoBmgJaA9DCAd6qG1DF25AlIaUUpRoFUv5aBZHQJBXGsySFGp1fZQoaAZoCWgPQwjrw3qjVp5uQJSGlFKUaBVL82gWR0CQV7A5Jbt7dX2UKGgGaAloD0MIEY3uIPbzcECUhpRSlGgVTTIBaBZHQJBYb9hqj8F1fZQoaAZoCWgPQwh8LH3oQoNyQJSGlFKUaBVL22gWR0CQWN0TURWcdX2UKGgGaAloD0MIwktw6kMWcECUhpRSlGgVTQYBaBZHQJBZVM495hV1fZQoaAZoCWgPQwhOQ1Thz4xyQJSGlFKUaBVNHwFoFkdAkFm4fr8iwHV9lChoBmgJaA9DCGBzDp5J53BAlIaUUpRoFUv4aBZHQJBZ+Oearm11fZQoaAZoCWgPQwhljuVddXpzQJSGlFKUaBVL22gWR0CQWgFpwjt5dX2UKGgGaAloD0MIca32sBeTb0CUhpRSlGgVS+hoFkdAkFond0q6OHV9lChoBmgJaA9DCBf1Se5w2XBAlIaUUpRoFU0OAWgWR0CQWtu/k/8mdX2UKGgGaAloD0MItFvLZPh0ckCUhpRSlGgVS+loFkdAkFuqcurZJ3V9lChoBmgJaA9DCFKZYg6CYHBAlIaUUpRoFU0GAWgWR0CQXDxRVIZqdX2UKGgGaAloD0MIx0YgXtfccECUhpRSlGgVTVYBaBZHQJBcqE25xzd1fZQoaAZoCWgPQwhOet/4GmZyQJSGlFKUaBVNAAFoFkdAkF1L0Bfa6HV9lChoBmgJaA9DCEKvP4lPZ3BAlIaUUpRoFU08AWgWR0CQX0SThYNidX2UKGgGaAloD0MIC5jArTvBckCUhpRSlGgVS+ZoFkdAkF9YukDZDnV9lChoBmgJaA9DCC457pROZ3BAlIaUUpRoFU0UAWgWR0CQX18DSw4bdX2UKGgGaAloD0MIK8O4G0SpckCUhpRSlGgVTQoBaBZHQJBfp4rz5Gl1fZQoaAZoCWgPQwihnj4CP5RyQJSGlFKUaBVL9GgWR0CQYBj/+85CdX2UKGgGaAloD0MIkQpjC0EccUCUhpRSlGgVS9doFkdAkGBzrVvuPXV9lChoBmgJaA9DCDF8REwJ+mFAlIaUUpRoFU3oA2gWR0CQYRjx0+1SdX2UKGgGaAloD0MISYPb2oJ9cECUhpRSlGgVS/9oFkdAkGE+w5eZ5XV9lChoBmgJaA9DCBk8TPtmU3BAlIaUUpRoFU0JAWgWR0CQYbra/RE4dX2UKGgGaAloD0MIy7+WV27WckCUhpRSlGgVTR8BaBZHQJBhxSLqD9R1fZQoaAZoCWgPQwjo3VhQmPZtQJSGlFKUaBVL9WgWR0CQYgKeTV2BdX2UKGgGaAloD0MIsiyY+CPIb0CUhpRSlGgVS/xoFkdAkGLMLWqcVnV9lChoBmgJaA9DCKX5Y1pb8nFAlIaUUpRoFUv9aBZHQJBjVNBWxQl1fZQoaAZoCWgPQwiFl+DUB1hyQJSGlFKUaBVNAAFoFkdAkGPXRsuWbHV9lChoBmgJaA9DCA3DR8RUpnFAlIaUUpRoFUv5aBZHQJBkPnW8RL91fZQoaAZoCWgPQwjRyyiW20xwQJSGlFKUaBVL3GgWR0CQZVzRx95RdX2UKGgGaAloD0MIXeFdLmKXbkCUhpRSlGgVS/1oFkdAkGZoN/e+EnV9lChoBmgJaA9DCDuMSX+vanJAlIaUUpRoFU0OAWgWR0CQZtR0U47zdX2UKGgGaAloD0MI9bnaiv1UckCUhpRSlGgVS9toFkdAkGc69kBjnXV9lChoBmgJaA9DCAlszsEz+G5AlIaUUpRoFU0YAWgWR0CQZ5gIhQnAdX2UKGgGaAloD0MIGRu62Z8gcECUhpRSlGgVS/ZoFkdAkGg3maH9FXV9lChoBmgJaA9DCC51kNcD4XJAlIaUUpRoFUvwaBZHQJBooA4n4PB1fZQoaAZoCWgPQwhQNA9gURxxQJSGlFKUaBVL8GgWR0CQaPlchTwVdX2UKGgGaAloD0MIJAot6/4jbkCUhpRSlGgVTT0BaBZHQJBpRpi7TUl1fZQoaAZoCWgPQwhc5J6ubvpwQJSGlFKUaBVNNgFoFkdAkGl1lf7aZnV9lChoBmgJaA9DCPuT+NyJAHBAlIaUUpRoFU0KAWgWR0CQaXZmI0qIdX2UKGgGaAloD0MIdGGkF/XscECUhpRSlGgVS+9oFkdAkGnm2b5M13V9lChoBmgJaA9DCDUHCOboZHBAlIaUUpRoFUvnaBZHQJBqPEaVD8d1fZQoaAZoCWgPQwh+VpkpbVFwQJSGlFKUaBVNBgFoFkdAkGuBje9BbHV9lChoBmgJaA9DCMu9wKzQ+nBAlIaUUpRoFU0VAWgWR0CQbFz19ORDdX2UKGgGaAloD0MIwHtHjcmecECUhpRSlGgVS+NoFkdAkGz9mg8KX3V9lChoBmgJaA9DCPQZUG9G/nBAlIaUUpRoFU0MAWgWR0CQbTssQNCrdX2UKGgGaAloD0MIaD7nbpfacUCUhpRSlGgVS+xoFkdAkG2lqnFYMnV9lChoBmgJaA9DCN6tLNGZfXFAlIaUUpRoFU0CAWgWR0CQbqSPluFYdX2UKGgGaAloD0MIeHsQAvKscUCUhpRSlGgVS+JoFkdAkG8PF72L53V9lChoBmgJaA9DCAySPq3iLXNAlIaUUpRoFUvZaBZHQJBvFsl9jPR1fZQoaAZoCWgPQwjgDz//fa9wQJSGlFKUaBVL2GgWR0CQcAhIOH32dX2UKGgGaAloD0MILCy4H3ByckCUhpRSlGgVS+5oFkdAkHA+VcD8tXV9lChoBmgJaA9DCDnRrkKK+HJAlIaUUpRoFUv1aBZHQJBwdLkCFK11fZQoaAZoCWgPQwgIWKt2zWZzQJSGlFKUaBVNHgFoFkdAkHCHkHUtqnV9lChoBmgJaA9DCJBPyM5bx3BAlIaUUpRoFU1CAWgWR0CQcPHPu5SWdX2UKGgGaAloD0MIvR3htGACbkCUhpRSlGgVS/1oFkdAkHFxG6PKdXV9lChoBmgJaA9DCJBMh05PtHJAlIaUUpRoFUvoaBZHQJByMDmr8zh1fZQoaAZoCWgPQwi5HK9AdK9tQJSGlFKUaBVL3GgWR0CQcrw9JSR9dX2UKGgGaAloD0MIbypSYazhcECUhpRSlGgVTVwBaBZHQJBzIWhysCF1ZS4="
|
71 |
+
},
|
72 |
+
"ep_success_buffer": {
|
73 |
+
":type:": "<class 'collections.deque'>",
|
74 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
75 |
+
},
|
76 |
+
"_n_updates": 248,
|
77 |
+
"n_steps": 1024,
|
78 |
+
"gamma": 0.999,
|
79 |
+
"gae_lambda": 0.98,
|
80 |
+
"ent_coef": 0.01,
|
81 |
+
"vf_coef": 0.5,
|
82 |
+
"max_grad_norm": 0.5,
|
83 |
+
"batch_size": 64,
|
84 |
+
"n_epochs": 4,
|
85 |
+
"clip_range": {
|
86 |
+
":type:": "<class 'function'>",
|
87 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
88 |
+
},
|
89 |
+
"clip_range_vf": null,
|
90 |
+
"normalize_advantage": true,
|
91 |
+
"target_kl": null
|
92 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d502ef88da3fbac0dce0ac16bf33cd8001303152abb58e52daa4998bb4ff4698
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13276dc979d4a89f204f044252522f6fb75acd4ac9e5a4c7e9850d02847d8c07
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (228 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 277.7913770156261, "std_reward": 19.714749339817452, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-04T09:36:16.736336"}
|