FlavienDeseure commited on
Commit
24fae8c
1 Parent(s): 0a007d7

PPO LunarLander

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: LunarLander-v2
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 277.79 +/- 19.71
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **LunarLander-v2** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **LunarLander-v2** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6471274280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6471274310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f64712743a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6471274430>", "_build": "<function ActorCriticPolicy._build at 0x7f64712744c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6471274550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f64712745e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6471274670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6471274700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6471274790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6471274820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f64712748b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f647126cab0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677920802857465362, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPfIHA4+uckCUhpRSlIwBbJRL/owBdJRHQJAnq0E5hjR1fZQoaAZoCWgPQwjhQbPr3oltQJSGlFKUaBVL5WgWR0CQJ9y/KyOadX2UKGgGaAloD0MI8piByjgwcUCUhpRSlGgVTQABaBZHQJAoPrIHTql1fZQoaAZoCWgPQwhsJXSXRNFxQJSGlFKUaBVNBQFoFkdAkChRZQpF1HV9lChoBmgJaA9DCP30nzW/D3FAlIaUUpRoFU0JAWgWR0CQKIBbfP5YdX2UKGgGaAloD0MIYRqGjwj9ckCUhpRSlGgVS/RoFkdAkCiUcCHRC3V9lChoBmgJaA9DCJpEveBT+G9AlIaUUpRoFUvwaBZHQJAon5ZbILh1fZQoaAZoCWgPQwjJ5T+kH4BwQJSGlFKUaBVNJAFoFkdAkCmG9Htnf3V9lChoBmgJaA9DCPIKRE+KinBAlIaUUpRoFUvvaBZHQJAqMpgCwKV1fZQoaAZoCWgPQwjezOhHg1NyQJSGlFKUaBVL6mgWR0CQKpz19ORDdX2UKGgGaAloD0MIKUF/oYdVcECUhpRSlGgVS+5oFkdAkCs23WnTAnV9lChoBmgJaA9DCAGloUYhHXBAlIaUUpRoFUvvaBZHQJAreHSF49p1fZQoaAZoCWgPQwijXBq/8IZxQJSGlFKUaBVL9WgWR0CQLRux8lXzdX2UKGgGaAloD0MIHNDSFSyJcUCUhpRSlGgVS/5oFkdAkC01UEPlMnV9lChoBmgJaA9DCHVY4ZZPdXFAlIaUUpRoFUv8aBZHQJAtl4Y77sR1fZQoaAZoCWgPQwjRsBh1LdJsQJSGlFKUaBVL8mgWR0CQLjUnXumadX2UKGgGaAloD0MIQQ+1bVhMcUCUhpRSlGgVS+9oFkdAkC5iQDFId3V9lChoBmgJaA9DCHrkDwbexnBAlIaUUpRoFU0uAWgWR0CQLyXTEzfrdX2UKGgGaAloD0MIrIvbaID/ckCUhpRSlGgVTQABaBZHQJAvbEMspXp1fZQoaAZoCWgPQwgBaf8DrBJuQJSGlFKUaBVL9WgWR0CQL4Ql8gIQdX2UKGgGaAloD0MI9S7ejxvkckCUhpRSlGgVTRIBaBZHQJAwDbBXS0B1fZQoaAZoCWgPQwiQuwhTVDJzQJSGlFKUaBVNIgFoFkdAkDDBISUTtnV9lChoBmgJaA9DCO9Z12g5lnFAlIaUUpRoFU0RAWgWR0CQMa3sXzlLdX2UKGgGaAloD0MI2/tUFdrdcECUhpRSlGgVTQgBaBZHQJAyUZtNzsB1fZQoaAZoCWgPQwgR/dr6qeRxQJSGlFKUaBVNHgFoFkdAkDOgX668QXV9lChoBmgJaA9DCHTQJRx6025AlIaUUpRoFU0cAWgWR0CQND508vEkdX2UKGgGaAloD0MIQPuRIjLXckCUhpRSlGgVS+xoFkdAkDSkU47zTXV9lChoBmgJaA9DCLWK/tBM1W9AlIaUUpRoFU0rAWgWR0CQNQaBqbjMdX2UKGgGaAloD0MIG7luSvl3b0CUhpRSlGgVTQ8BaBZHQJA14MrmQsB1fZQoaAZoCWgPQwjjGTT0z/ZxQJSGlFKUaBVNGAFoFkdAkDaggxJumHV9lChoBmgJaA9DCAQeGEA4tHJAlIaUUpRoFUvpaBZHQJA3DFaSs8x1fZQoaAZoCWgPQwhETfT5KO5vQJSGlFKUaBVNEAFoFkdAkDgbM9r433V9lChoBmgJaA9DCDwtP3CVcm9AlIaUUpRoFU0wAWgWR0CQODmxMWXUdX2UKGgGaAloD0MI2/0qwHe/ckCUhpRSlGgVTS8BaBZHQJA4WwOe8PF1fZQoaAZoCWgPQwiLUkKw6oRyQJSGlFKUaBVNGAFoFkdAkDihZlnRLXV9lChoBmgJaA9DCPllMEbkynBAlIaUUpRoFU0QAWgWR0CQOPuUD+zddX2UKGgGaAloD0MIj1N0JJc2b0CUhpRSlGgVTQABaBZHQJA5NjYqXnh1fZQoaAZoCWgPQwhpboWwmjdzQJSGlFKUaBVNAAFoFkdAkDn5nDiwS3V9lChoBmgJaA9DCFmHo6v0r3FAlIaUUpRoFUv2aBZHQJA6OtuDSPV1fZQoaAZoCWgPQwjV6UDW021xQJSGlFKUaBVL8mgWR0CQOzGNJe3QdX2UKGgGaAloD0MIcm2oGOeJckCUhpRSlGgVS+ZoFkdAkFXsG9pRGnV9lChoBmgJaA9DCAd6qG1DF25AlIaUUpRoFUv5aBZHQJBXGsySFGp1fZQoaAZoCWgPQwjrw3qjVp5uQJSGlFKUaBVL82gWR0CQV7A5Jbt7dX2UKGgGaAloD0MIEY3uIPbzcECUhpRSlGgVTTIBaBZHQJBYb9hqj8F1fZQoaAZoCWgPQwh8LH3oQoNyQJSGlFKUaBVL22gWR0CQWN0TURWcdX2UKGgGaAloD0MIwktw6kMWcECUhpRSlGgVTQYBaBZHQJBZVM495hV1fZQoaAZoCWgPQwhOQ1Thz4xyQJSGlFKUaBVNHwFoFkdAkFm4fr8iwHV9lChoBmgJaA9DCGBzDp5J53BAlIaUUpRoFUv4aBZHQJBZ+Oearm11fZQoaAZoCWgPQwhljuVddXpzQJSGlFKUaBVL22gWR0CQWgFpwjt5dX2UKGgGaAloD0MIca32sBeTb0CUhpRSlGgVS+hoFkdAkFond0q6OHV9lChoBmgJaA9DCBf1Se5w2XBAlIaUUpRoFU0OAWgWR0CQWtu/k/8mdX2UKGgGaAloD0MItFvLZPh0ckCUhpRSlGgVS+loFkdAkFuqcurZJ3V9lChoBmgJaA9DCFKZYg6CYHBAlIaUUpRoFU0GAWgWR0CQXDxRVIZqdX2UKGgGaAloD0MIx0YgXtfccECUhpRSlGgVTVYBaBZHQJBcqE25xzd1fZQoaAZoCWgPQwhOet/4GmZyQJSGlFKUaBVNAAFoFkdAkF1L0Bfa6HV9lChoBmgJaA9DCEKvP4lPZ3BAlIaUUpRoFU08AWgWR0CQX0SThYNidX2UKGgGaAloD0MIC5jArTvBckCUhpRSlGgVS+ZoFkdAkF9YukDZDnV9lChoBmgJaA9DCC457pROZ3BAlIaUUpRoFU0UAWgWR0CQX18DSw4bdX2UKGgGaAloD0MIK8O4G0SpckCUhpRSlGgVTQoBaBZHQJBfp4rz5Gl1fZQoaAZoCWgPQwihnj4CP5RyQJSGlFKUaBVL9GgWR0CQYBj/+85CdX2UKGgGaAloD0MIkQpjC0EccUCUhpRSlGgVS9doFkdAkGBzrVvuPXV9lChoBmgJaA9DCDF8REwJ+mFAlIaUUpRoFU3oA2gWR0CQYRjx0+1SdX2UKGgGaAloD0MISYPb2oJ9cECUhpRSlGgVS/9oFkdAkGE+w5eZ5XV9lChoBmgJaA9DCBk8TPtmU3BAlIaUUpRoFU0JAWgWR0CQYbra/RE4dX2UKGgGaAloD0MIy7+WV27WckCUhpRSlGgVTR8BaBZHQJBhxSLqD9R1fZQoaAZoCWgPQwjo3VhQmPZtQJSGlFKUaBVL9WgWR0CQYgKeTV2BdX2UKGgGaAloD0MIsiyY+CPIb0CUhpRSlGgVS/xoFkdAkGLMLWqcVnV9lChoBmgJaA9DCKX5Y1pb8nFAlIaUUpRoFUv9aBZHQJBjVNBWxQl1fZQoaAZoCWgPQwiFl+DUB1hyQJSGlFKUaBVNAAFoFkdAkGPXRsuWbHV9lChoBmgJaA9DCA3DR8RUpnFAlIaUUpRoFUv5aBZHQJBkPnW8RL91fZQoaAZoCWgPQwjRyyiW20xwQJSGlFKUaBVL3GgWR0CQZVzRx95RdX2UKGgGaAloD0MIXeFdLmKXbkCUhpRSlGgVS/1oFkdAkGZoN/e+EnV9lChoBmgJaA9DCDuMSX+vanJAlIaUUpRoFU0OAWgWR0CQZtR0U47zdX2UKGgGaAloD0MI9bnaiv1UckCUhpRSlGgVS9toFkdAkGc69kBjnXV9lChoBmgJaA9DCAlszsEz+G5AlIaUUpRoFU0YAWgWR0CQZ5gIhQnAdX2UKGgGaAloD0MIGRu62Z8gcECUhpRSlGgVS/ZoFkdAkGg3maH9FXV9lChoBmgJaA9DCC51kNcD4XJAlIaUUpRoFUvwaBZHQJBooA4n4PB1fZQoaAZoCWgPQwhQNA9gURxxQJSGlFKUaBVL8GgWR0CQaPlchTwVdX2UKGgGaAloD0MIJAot6/4jbkCUhpRSlGgVTT0BaBZHQJBpRpi7TUl1fZQoaAZoCWgPQwhc5J6ubvpwQJSGlFKUaBVNNgFoFkdAkGl1lf7aZnV9lChoBmgJaA9DCPuT+NyJAHBAlIaUUpRoFU0KAWgWR0CQaXZmI0qIdX2UKGgGaAloD0MIdGGkF/XscECUhpRSlGgVS+9oFkdAkGnm2b5M13V9lChoBmgJaA9DCDUHCOboZHBAlIaUUpRoFUvnaBZHQJBqPEaVD8d1fZQoaAZoCWgPQwh+VpkpbVFwQJSGlFKUaBVNBgFoFkdAkGuBje9BbHV9lChoBmgJaA9DCMu9wKzQ+nBAlIaUUpRoFU0VAWgWR0CQbFz19ORDdX2UKGgGaAloD0MIwHtHjcmecECUhpRSlGgVS+NoFkdAkGz9mg8KX3V9lChoBmgJaA9DCPQZUG9G/nBAlIaUUpRoFU0MAWgWR0CQbTssQNCrdX2UKGgGaAloD0MIaD7nbpfacUCUhpRSlGgVS+xoFkdAkG2lqnFYMnV9lChoBmgJaA9DCN6tLNGZfXFAlIaUUpRoFU0CAWgWR0CQbqSPluFYdX2UKGgGaAloD0MIeHsQAvKscUCUhpRSlGgVS+JoFkdAkG8PF72L53V9lChoBmgJaA9DCAySPq3iLXNAlIaUUpRoFUvZaBZHQJBvFsl9jPR1fZQoaAZoCWgPQwjgDz//fa9wQJSGlFKUaBVL2GgWR0CQcAhIOH32dX2UKGgGaAloD0MILCy4H3ByckCUhpRSlGgVS+5oFkdAkHA+VcD8tXV9lChoBmgJaA9DCDnRrkKK+HJAlIaUUpRoFUv1aBZHQJBwdLkCFK11fZQoaAZoCWgPQwgIWKt2zWZzQJSGlFKUaBVNHgFoFkdAkHCHkHUtqnV9lChoBmgJaA9DCJBPyM5bx3BAlIaUUpRoFU1CAWgWR0CQcPHPu5SWdX2UKGgGaAloD0MIvR3htGACbkCUhpRSlGgVS/1oFkdAkHFxG6PKdXV9lChoBmgJaA9DCJBMh05PtHJAlIaUUpRoFUvoaBZHQJByMDmr8zh1fZQoaAZoCWgPQwi5HK9AdK9tQJSGlFKUaBVL3GgWR0CQcrw9JSR9dX2UKGgGaAloD0MIbypSYazhcECUhpRSlGgVTVwBaBZHQJBzIWhysCF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6a881f10fab7f45a07ae29b8baae8e97a922c46db8e6857937087c97fa43339
3
+ size 146552
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6471274280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6471274310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f64712743a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6471274430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f64712744c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6471274550>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f64712745e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6471274670>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6471274700>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6471274790>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6471274820>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f64712748b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f647126cab0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677920802857465362,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": null,
59
+ "_last_episode_starts": {
60
+ ":type:": "<class 'numpy.ndarray'>",
61
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
62
+ },
63
+ "_last_original_obs": null,
64
+ "_episode_num": 0,
65
+ "use_sde": false,
66
+ "sde_sample_freq": -1,
67
+ "_current_progress_remaining": -0.015808000000000044,
68
+ "ep_info_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVTRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPfIHA4+uckCUhpRSlIwBbJRL/owBdJRHQJAnq0E5hjR1fZQoaAZoCWgPQwjhQbPr3oltQJSGlFKUaBVL5WgWR0CQJ9y/KyOadX2UKGgGaAloD0MI8piByjgwcUCUhpRSlGgVTQABaBZHQJAoPrIHTql1fZQoaAZoCWgPQwhsJXSXRNFxQJSGlFKUaBVNBQFoFkdAkChRZQpF1HV9lChoBmgJaA9DCP30nzW/D3FAlIaUUpRoFU0JAWgWR0CQKIBbfP5YdX2UKGgGaAloD0MIYRqGjwj9ckCUhpRSlGgVS/RoFkdAkCiUcCHRC3V9lChoBmgJaA9DCJpEveBT+G9AlIaUUpRoFUvwaBZHQJAon5ZbILh1fZQoaAZoCWgPQwjJ5T+kH4BwQJSGlFKUaBVNJAFoFkdAkCmG9Htnf3V9lChoBmgJaA9DCPIKRE+KinBAlIaUUpRoFUvvaBZHQJAqMpgCwKV1fZQoaAZoCWgPQwjezOhHg1NyQJSGlFKUaBVL6mgWR0CQKpz19ORDdX2UKGgGaAloD0MIKUF/oYdVcECUhpRSlGgVS+5oFkdAkCs23WnTAnV9lChoBmgJaA9DCAGloUYhHXBAlIaUUpRoFUvvaBZHQJAreHSF49p1fZQoaAZoCWgPQwijXBq/8IZxQJSGlFKUaBVL9WgWR0CQLRux8lXzdX2UKGgGaAloD0MIHNDSFSyJcUCUhpRSlGgVS/5oFkdAkC01UEPlMnV9lChoBmgJaA9DCHVY4ZZPdXFAlIaUUpRoFUv8aBZHQJAtl4Y77sR1fZQoaAZoCWgPQwjRsBh1LdJsQJSGlFKUaBVL8mgWR0CQLjUnXumadX2UKGgGaAloD0MIQQ+1bVhMcUCUhpRSlGgVS+9oFkdAkC5iQDFId3V9lChoBmgJaA9DCHrkDwbexnBAlIaUUpRoFU0uAWgWR0CQLyXTEzfrdX2UKGgGaAloD0MIrIvbaID/ckCUhpRSlGgVTQABaBZHQJAvbEMspXp1fZQoaAZoCWgPQwgBaf8DrBJuQJSGlFKUaBVL9WgWR0CQL4Ql8gIQdX2UKGgGaAloD0MI9S7ejxvkckCUhpRSlGgVTRIBaBZHQJAwDbBXS0B1fZQoaAZoCWgPQwiQuwhTVDJzQJSGlFKUaBVNIgFoFkdAkDDBISUTtnV9lChoBmgJaA9DCO9Z12g5lnFAlIaUUpRoFU0RAWgWR0CQMa3sXzlLdX2UKGgGaAloD0MI2/tUFdrdcECUhpRSlGgVTQgBaBZHQJAyUZtNzsB1fZQoaAZoCWgPQwgR/dr6qeRxQJSGlFKUaBVNHgFoFkdAkDOgX668QXV9lChoBmgJaA9DCHTQJRx6025AlIaUUpRoFU0cAWgWR0CQND508vEkdX2UKGgGaAloD0MIQPuRIjLXckCUhpRSlGgVS+xoFkdAkDSkU47zTXV9lChoBmgJaA9DCLWK/tBM1W9AlIaUUpRoFU0rAWgWR0CQNQaBqbjMdX2UKGgGaAloD0MIG7luSvl3b0CUhpRSlGgVTQ8BaBZHQJA14MrmQsB1fZQoaAZoCWgPQwjjGTT0z/ZxQJSGlFKUaBVNGAFoFkdAkDaggxJumHV9lChoBmgJaA9DCAQeGEA4tHJAlIaUUpRoFUvpaBZHQJA3DFaSs8x1fZQoaAZoCWgPQwhETfT5KO5vQJSGlFKUaBVNEAFoFkdAkDgbM9r433V9lChoBmgJaA9DCDwtP3CVcm9AlIaUUpRoFU0wAWgWR0CQODmxMWXUdX2UKGgGaAloD0MI2/0qwHe/ckCUhpRSlGgVTS8BaBZHQJA4WwOe8PF1fZQoaAZoCWgPQwiLUkKw6oRyQJSGlFKUaBVNGAFoFkdAkDihZlnRLXV9lChoBmgJaA9DCPllMEbkynBAlIaUUpRoFU0QAWgWR0CQOPuUD+zddX2UKGgGaAloD0MIj1N0JJc2b0CUhpRSlGgVTQABaBZHQJA5NjYqXnh1fZQoaAZoCWgPQwhpboWwmjdzQJSGlFKUaBVNAAFoFkdAkDn5nDiwS3V9lChoBmgJaA9DCFmHo6v0r3FAlIaUUpRoFUv2aBZHQJA6OtuDSPV1fZQoaAZoCWgPQwjV6UDW021xQJSGlFKUaBVL8mgWR0CQOzGNJe3QdX2UKGgGaAloD0MIcm2oGOeJckCUhpRSlGgVS+ZoFkdAkFXsG9pRGnV9lChoBmgJaA9DCAd6qG1DF25AlIaUUpRoFUv5aBZHQJBXGsySFGp1fZQoaAZoCWgPQwjrw3qjVp5uQJSGlFKUaBVL82gWR0CQV7A5Jbt7dX2UKGgGaAloD0MIEY3uIPbzcECUhpRSlGgVTTIBaBZHQJBYb9hqj8F1fZQoaAZoCWgPQwh8LH3oQoNyQJSGlFKUaBVL22gWR0CQWN0TURWcdX2UKGgGaAloD0MIwktw6kMWcECUhpRSlGgVTQYBaBZHQJBZVM495hV1fZQoaAZoCWgPQwhOQ1Thz4xyQJSGlFKUaBVNHwFoFkdAkFm4fr8iwHV9lChoBmgJaA9DCGBzDp5J53BAlIaUUpRoFUv4aBZHQJBZ+Oearm11fZQoaAZoCWgPQwhljuVddXpzQJSGlFKUaBVL22gWR0CQWgFpwjt5dX2UKGgGaAloD0MIca32sBeTb0CUhpRSlGgVS+hoFkdAkFond0q6OHV9lChoBmgJaA9DCBf1Se5w2XBAlIaUUpRoFU0OAWgWR0CQWtu/k/8mdX2UKGgGaAloD0MItFvLZPh0ckCUhpRSlGgVS+loFkdAkFuqcurZJ3V9lChoBmgJaA9DCFKZYg6CYHBAlIaUUpRoFU0GAWgWR0CQXDxRVIZqdX2UKGgGaAloD0MIx0YgXtfccECUhpRSlGgVTVYBaBZHQJBcqE25xzd1fZQoaAZoCWgPQwhOet/4GmZyQJSGlFKUaBVNAAFoFkdAkF1L0Bfa6HV9lChoBmgJaA9DCEKvP4lPZ3BAlIaUUpRoFU08AWgWR0CQX0SThYNidX2UKGgGaAloD0MIC5jArTvBckCUhpRSlGgVS+ZoFkdAkF9YukDZDnV9lChoBmgJaA9DCC457pROZ3BAlIaUUpRoFU0UAWgWR0CQX18DSw4bdX2UKGgGaAloD0MIK8O4G0SpckCUhpRSlGgVTQoBaBZHQJBfp4rz5Gl1fZQoaAZoCWgPQwihnj4CP5RyQJSGlFKUaBVL9GgWR0CQYBj/+85CdX2UKGgGaAloD0MIkQpjC0EccUCUhpRSlGgVS9doFkdAkGBzrVvuPXV9lChoBmgJaA9DCDF8REwJ+mFAlIaUUpRoFU3oA2gWR0CQYRjx0+1SdX2UKGgGaAloD0MISYPb2oJ9cECUhpRSlGgVS/9oFkdAkGE+w5eZ5XV9lChoBmgJaA9DCBk8TPtmU3BAlIaUUpRoFU0JAWgWR0CQYbra/RE4dX2UKGgGaAloD0MIy7+WV27WckCUhpRSlGgVTR8BaBZHQJBhxSLqD9R1fZQoaAZoCWgPQwjo3VhQmPZtQJSGlFKUaBVL9WgWR0CQYgKeTV2BdX2UKGgGaAloD0MIsiyY+CPIb0CUhpRSlGgVS/xoFkdAkGLMLWqcVnV9lChoBmgJaA9DCKX5Y1pb8nFAlIaUUpRoFUv9aBZHQJBjVNBWxQl1fZQoaAZoCWgPQwiFl+DUB1hyQJSGlFKUaBVNAAFoFkdAkGPXRsuWbHV9lChoBmgJaA9DCA3DR8RUpnFAlIaUUpRoFUv5aBZHQJBkPnW8RL91fZQoaAZoCWgPQwjRyyiW20xwQJSGlFKUaBVL3GgWR0CQZVzRx95RdX2UKGgGaAloD0MIXeFdLmKXbkCUhpRSlGgVS/1oFkdAkGZoN/e+EnV9lChoBmgJaA9DCDuMSX+vanJAlIaUUpRoFU0OAWgWR0CQZtR0U47zdX2UKGgGaAloD0MI9bnaiv1UckCUhpRSlGgVS9toFkdAkGc69kBjnXV9lChoBmgJaA9DCAlszsEz+G5AlIaUUpRoFU0YAWgWR0CQZ5gIhQnAdX2UKGgGaAloD0MIGRu62Z8gcECUhpRSlGgVS/ZoFkdAkGg3maH9FXV9lChoBmgJaA9DCC51kNcD4XJAlIaUUpRoFUvwaBZHQJBooA4n4PB1fZQoaAZoCWgPQwhQNA9gURxxQJSGlFKUaBVL8GgWR0CQaPlchTwVdX2UKGgGaAloD0MIJAot6/4jbkCUhpRSlGgVTT0BaBZHQJBpRpi7TUl1fZQoaAZoCWgPQwhc5J6ubvpwQJSGlFKUaBVNNgFoFkdAkGl1lf7aZnV9lChoBmgJaA9DCPuT+NyJAHBAlIaUUpRoFU0KAWgWR0CQaXZmI0qIdX2UKGgGaAloD0MIdGGkF/XscECUhpRSlGgVS+9oFkdAkGnm2b5M13V9lChoBmgJaA9DCDUHCOboZHBAlIaUUpRoFUvnaBZHQJBqPEaVD8d1fZQoaAZoCWgPQwh+VpkpbVFwQJSGlFKUaBVNBgFoFkdAkGuBje9BbHV9lChoBmgJaA9DCMu9wKzQ+nBAlIaUUpRoFU0VAWgWR0CQbFz19ORDdX2UKGgGaAloD0MIwHtHjcmecECUhpRSlGgVS+NoFkdAkGz9mg8KX3V9lChoBmgJaA9DCPQZUG9G/nBAlIaUUpRoFU0MAWgWR0CQbTssQNCrdX2UKGgGaAloD0MIaD7nbpfacUCUhpRSlGgVS+xoFkdAkG2lqnFYMnV9lChoBmgJaA9DCN6tLNGZfXFAlIaUUpRoFU0CAWgWR0CQbqSPluFYdX2UKGgGaAloD0MIeHsQAvKscUCUhpRSlGgVS+JoFkdAkG8PF72L53V9lChoBmgJaA9DCAySPq3iLXNAlIaUUpRoFUvZaBZHQJBvFsl9jPR1fZQoaAZoCWgPQwjgDz//fa9wQJSGlFKUaBVL2GgWR0CQcAhIOH32dX2UKGgGaAloD0MILCy4H3ByckCUhpRSlGgVS+5oFkdAkHA+VcD8tXV9lChoBmgJaA9DCDnRrkKK+HJAlIaUUpRoFUv1aBZHQJBwdLkCFK11fZQoaAZoCWgPQwgIWKt2zWZzQJSGlFKUaBVNHgFoFkdAkHCHkHUtqnV9lChoBmgJaA9DCJBPyM5bx3BAlIaUUpRoFU1CAWgWR0CQcPHPu5SWdX2UKGgGaAloD0MIvR3htGACbkCUhpRSlGgVS/1oFkdAkHFxG6PKdXV9lChoBmgJaA9DCJBMh05PtHJAlIaUUpRoFUvoaBZHQJByMDmr8zh1fZQoaAZoCWgPQwi5HK9AdK9tQJSGlFKUaBVL3GgWR0CQcrw9JSR9dX2UKGgGaAloD0MIbypSYazhcECUhpRSlGgVTVwBaBZHQJBzIWhysCF1ZS4="
71
+ },
72
+ "ep_success_buffer": {
73
+ ":type:": "<class 'collections.deque'>",
74
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
75
+ },
76
+ "_n_updates": 248,
77
+ "n_steps": 1024,
78
+ "gamma": 0.999,
79
+ "gae_lambda": 0.98,
80
+ "ent_coef": 0.01,
81
+ "vf_coef": 0.5,
82
+ "max_grad_norm": 0.5,
83
+ "batch_size": 64,
84
+ "n_epochs": 4,
85
+ "clip_range": {
86
+ ":type:": "<class 'function'>",
87
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
88
+ },
89
+ "clip_range_vf": null,
90
+ "normalize_advantage": true,
91
+ "target_kl": null
92
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d502ef88da3fbac0dce0ac16bf33cd8001303152abb58e52daa4998bb4ff4698
3
+ size 88057
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13276dc979d4a89f204f044252522f6fb75acd4ac9e5a4c7e9850d02847d8c07
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (228 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 277.7913770156261, "std_reward": 19.714749339817452, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-04T09:36:16.736336"}