FlipFlopsNSocks
commited on
Commit
·
29bedc1
1
Parent(s):
4a08cd1
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,102 @@
|
|
1 |
---
|
2 |
license: wtfpl
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: wtfpl
|
3 |
---
|
4 |
+
from transformers import pipeline
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
6 |
+
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
7 |
+
classifier = pipeline("ner", model=model, tokenizer=tokenizer)
|
8 |
+
classifier("Alya told Jasmine that Andrew could pay with cash..")
|
9 |
+
[{'end': 2,
|
10 |
+
'entity': 'I-PER',
|
11 |
+
'index': 1,
|
12 |
+
'score': 0.9997861,
|
13 |
+
'start': 0,
|
14 |
+
'word': '▁Al'},
|
15 |
+
{'end': 4,
|
16 |
+
'entity': 'I-PER',
|
17 |
+
'index': 2,
|
18 |
+
'score': 0.9998591,
|
19 |
+
'start': 2,
|
20 |
+
'word': 'ya'},
|
21 |
+
{'end': 16,
|
22 |
+
'entity': 'I-PER',
|
23 |
+
'index': 4,
|
24 |
+
'score': 0.99995816,
|
25 |
+
'start': 10,
|
26 |
+
'word': '▁Jasmin'},
|
27 |
+
{'end': 17,
|
28 |
+
'entity': 'I-PER',
|
29 |
+
'index': 5,
|
30 |
+
'score': 0.9999584,
|
31 |
+
'start': 16,
|
32 |
+
'word': 'e'},
|
33 |
+
{'end': 29,
|
34 |
+
'entity': 'I-PER',
|
35 |
+
'index': 7,
|
36 |
+
'score': 0.99998057,
|
37 |
+
'start': 23,
|
38 |
+
'word': '▁Andrew'}]
|
39 |
+
|
40 |
+
Recommendations
|
41 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
|
42 |
+
|
43 |
+
Training
|
44 |
+
See the following resources for training data and training procedure details:
|
45 |
+
|
46 |
+
XLM-RoBERTa-large model card
|
47 |
+
CoNLL-2003 data card
|
48 |
+
Associated paper
|
49 |
+
Evaluation
|
50 |
+
See the associated paper for evaluation details.
|
51 |
+
|
52 |
+
Environmental Impact
|
53 |
+
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
|
54 |
+
|
55 |
+
Hardware Type: 500 32GB Nvidia V100 GPUs (from the associated paper)
|
56 |
+
Hours used: More information needed
|
57 |
+
Cloud Provider: More information needed
|
58 |
+
Compute Region: More information needed
|
59 |
+
Carbon Emitted: More information needed
|
60 |
+
Technical Specifications
|
61 |
+
See the associated paper for further details.
|
62 |
+
|
63 |
+
Citation
|
64 |
+
BibTeX:
|
65 |
+
|
66 |
+
@article{conneau2019unsupervised,
|
67 |
+
title={Unsupervised Cross-lingual Representation Learning at Scale},
|
68 |
+
author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
|
69 |
+
journal={arXiv preprint arXiv:1911.02116},
|
70 |
+
year={2019}
|
71 |
+
}
|
72 |
+
|
73 |
+
APA:
|
74 |
+
|
75 |
+
Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.
|
76 |
+
Model Card Authors
|
77 |
+
This model card was written by the team at Hugging Face.
|
78 |
+
|
79 |
+
How to Get Started with the Model
|
80 |
+
Use the code below to get started with the model. You can use this model directly within a pipeline for NER.
|
81 |
+
|
82 |
+
Click to expand
|
83 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
84 |
+
from transformers import pipeline
|
85 |
+
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
86 |
+
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
87 |
+
classifier = pipeline("ner", model=model, tokenizer=tokenizer)
|
88 |
+
classifier("Hello I'm Omar and I live in Zürich.")
|
89 |
+
|
90 |
+
[{'end': 14,
|
91 |
+
'entity': 'I-PER',
|
92 |
+
'index': 5,
|
93 |
+
'score': 0.9999175,
|
94 |
+
'start': 10,
|
95 |
+
'word': '▁Omar'},
|
96 |
+
{'end': 35,
|
97 |
+
'entity': 'I-LOC',
|
98 |
+
'index': 10,
|
99 |
+
'score': 0.9999906,
|
100 |
+
'start': 29,
|
101 |
+
'word': '▁Zürich'}]
|
102 |
+
|