--- license: gemma base_model: google/gemma-2b-it tags: - generated_from_trainer model-index: - name: pm_models/gemma-2b-it_lr1e-5_ultrafeedback results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: google/gemma-2b-it model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer # tokenizer_config: google/gemma-2b-it load_in_8bit: false load_in_4bit: false strict: false datasets: - path: /scratch/jiarui14/dpo-ood/LLM-finetune/WX-Reward-Modeling/pair-pm/ultrafeedback-single conversation: gemma type: sharegpt.load_ultrachat split: "train" train_on_split: "train" warmup_steps: 40 val_set_size: 0.0 output_dir: ./pm_models/gemma-2b-it_lr1e-5_ultrafeedback #wandb_project: preference-models #wandb_entity: domain-generalization wandb_watch: wandb_name: "gemma-2b-it_lr1e-5_ultrafeedback" #_response_only wandb_log_model: train_on_inputs: false save_safetensors: true #noisy_embedding_alpha: 10.0 # default for sharegpt type dataset_prepared_path: data/gemma-2b-it/ultrafeedback dataset_processes: 48 #torch_compile: true sequence_len: 3072 sample_packing: true pad_to_sequence_len: true trust_remote_code: True adapter: lora_model_dir: gradient_checkpointing: false #warmup_ratio: 0.1 gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 1e-5 weight_decay: 0.0 max_grad_norm: 1.0 group_by_length: false bf16: auto fp16: false tf32: true early_stopping_patience: local_rank: logging_steps: 1 xformers_attention: flash_attention: true eval_steps: eval_table_size: eval_table_max_new_tokens: save_steps: 50 save_strategy: "steps" save_total_limit: 2 debug: ddp: #true deepspeed: #deepspeed/zero1.json # multi-gpu only fsdp: fsdp_config: special_tokens: ```

# pm_models/gemma-2b-it_lr1e-5_ultrafeedback This model is a fine-tuned version of [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 40 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.43.3 - Pytorch 2.1.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1