import gradio as gr from diffusers import AutoPipelineForText2Image import torch # Function to generate the image def generate_image(prompt): # Load the pipeline with default settings which should default to a CPU compatible setting if `fp32` is available pipe = AutoPipelineForText2Image.from_pretrained( "stabilityai/sdxl-turbo", torch_dtype=torch.float32 # Using float32 for CPU compatibility ) pipe = pipe.to("cpu") # Ensure the pipeline is using the CPU # Generate the image based on the prompt image = pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0] return image # Define the Gradio interface interface = gr.Interface( fn=generate_image, inputs=gr.Textbox(label="Enter a description for the image"), outputs=gr.Image(type="pil", label="Generated Image"), title="Image Generator", description="This interface generates images based on your descriptions using the Stability AI SDXL-Turbo model." ) # Prepare to run in Hugging Face Spaces if __name__ == "__main__": interface.launch()