Flux9665 commited on
Commit
3e9fcf2
1 Parent(s): 03b2456

Upload playground_yeet_the_unclean.py

Browse files
Files changed (1) hide show
  1. playground_yeet_the_unclean.py +212 -0
playground_yeet_the_unclean.py ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import multiprocessing
2
+ import os
3
+ import shutil
4
+
5
+ import librosa as lb
6
+ import numpy as np
7
+ import soundfile as sf
8
+ from deepmultilingualpunctuation import PunctuationModel
9
+ from pyannote.audio import Pipeline
10
+ from rpunct import RestorePuncts
11
+ from tqdm import tqdm
12
+
13
+
14
+ class UncleanYeeter:
15
+ def __init__(self):
16
+ """
17
+ all the models and persistent stuff
18
+ """
19
+ self.diarizer = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1")
20
+
21
+ def create_list_of_samples_marked_for_deletion(self, list_of_audios):
22
+ marked_for_yeeting = list()
23
+ for audio_file in tqdm(list_of_audios):
24
+ try:
25
+ wav, sr = sf.read(audio_file)
26
+ except RuntimeError:
27
+ print(f"PROBLEMATIC FILE: {audio_file}")
28
+ continue
29
+ wav = to_mono(wav)
30
+
31
+ # check duration
32
+ if 5 < len(wav) / sr < 15:
33
+ continue
34
+
35
+ # check SNR
36
+ if wada_snr(wav) < 20.0:
37
+ continue
38
+
39
+ # check amount of speakers
40
+ try:
41
+ output = self.diarizer(audio_file)
42
+ except ValueError:
43
+ print("Diarizer is unhappy")
44
+ continue
45
+ speakers = set()
46
+ for _, _, speaker in output.itertracks(yield_label=True):
47
+ speakers.add(speaker)
48
+ if len(speakers) > 1:
49
+ continue
50
+
51
+ marked_for_yeeting.append(audio_file.split("/")[-1])
52
+
53
+ # save list of files to be yoten to a file for later yeeting
54
+ with open("files_to_keep.txt", "a", encoding="utf8") as file:
55
+ file.write("\n".join(marked_for_yeeting) + "\n")
56
+ print(marked_for_yeeting)
57
+
58
+
59
+ class Punctuator:
60
+ def __init__(self, lang="eng"):
61
+ if lang == "en":
62
+ model = RestorePuncts()
63
+ self.punctuate_transcripts = model.punctuate # pass a string into it and you get a punctuated string returned
64
+ else:
65
+ model = PunctuationModel()
66
+ self.punctuate_transcripts = model.restore_punctuation # pass a string into it and you get a punctuated string returned
67
+
68
+
69
+ def wada_snr(wav):
70
+ # Direct blind estimation of the SNR of a speech signal.
71
+ #
72
+ # Paper on WADA SNR:
73
+ # http://www.cs.cmu.edu/~robust/Papers/KimSternIS08.pdf
74
+ #
75
+ # This function was adapted from this matlab code:
76
+ # https://labrosa.ee.columbia.edu/projects/snreval/#9
77
+
78
+ # init
79
+ eps = 1e-10
80
+ # next 2 lines define a fancy curve derived from a gamma distribution -- see paper
81
+ db_vals = np.arange(-20, 101)
82
+ g_vals = np.array(
83
+ [0.40974774, 0.40986926, 0.40998566, 0.40969089, 0.40986186, 0.40999006, 0.41027138, 0.41052627, 0.41101024, 0.41143264, 0.41231718, 0.41337272, 0.41526426, 0.4178192, 0.42077252, 0.42452799, 0.42918886, 0.43510373, 0.44234195, 0.45161485, 0.46221153, 0.47491647, 0.48883809, 0.50509236, 0.52353709, 0.54372088, 0.56532427,
84
+ 0.58847532, 0.61346212, 0.63954496, 0.66750818, 0.69583724, 0.72454762, 0.75414799, 0.78323148, 0.81240985, 0.84219775, 0.87166406, 0.90030504, 0.92880418, 0.95655449, 0.9835349, 1.01047155, 1.0362095, 1.06136425, 1.08579312, 1.1094819, 1.13277995, 1.15472826, 1.17627308, 1.19703503, 1.21671694, 1.23535898, 1.25364313,
85
+ 1.27103891, 1.28718029, 1.30302865, 1.31839527, 1.33294817, 1.34700935, 1.3605727, 1.37345513, 1.38577122, 1.39733504, 1.40856397, 1.41959619, 1.42983624, 1.43958467, 1.44902176, 1.45804831, 1.46669568, 1.47486938, 1.48269965, 1.49034339, 1.49748214, 1.50435106, 1.51076426, 1.51698915, 1.5229097, 1.528578, 1.53389835, 1.5391211,
86
+ 1.5439065, 1.54858517, 1.55310776, 1.55744391, 1.56164927, 1.56566348, 1.56938671, 1.57307767, 1.57654764, 1.57980083, 1.58304129, 1.58602496, 1.58880681, 1.59162477, 1.5941969, 1.59693155, 1.599446, 1.60185011, 1.60408668, 1.60627134, 1.60826199, 1.61004547, 1.61192472, 1.61369656, 1.61534074, 1.61688905, 1.61838916, 1.61985374,
87
+ 1.62135878, 1.62268119, 1.62390423, 1.62513143, 1.62632463, 1.6274027, 1.62842767, 1.62945532, 1.6303307, 1.63128026, 1.63204102])
88
+
89
+ # peak normalize, get magnitude, clip lower bound
90
+ wav = np.array(wav)
91
+ wav = wav / abs(wav).max()
92
+ abs_wav = abs(wav)
93
+ abs_wav[abs_wav < eps] = eps
94
+
95
+ # calcuate statistics
96
+ # E[|z|]
97
+ v1 = max(eps, abs_wav.mean())
98
+ # E[log|z|]
99
+ v2 = np.log(abs_wav).mean()
100
+ # log(E[|z|]) - E[log(|z|)]
101
+ v3 = np.log(v1) - v2
102
+
103
+ # table interpolation
104
+ wav_snr_idx = None
105
+ if any(g_vals < v3):
106
+ wav_snr_idx = np.where(g_vals < v3)[0].max()
107
+ # handle edge cases or interpolate
108
+ if wav_snr_idx is None:
109
+ wav_snr = db_vals[0]
110
+ elif wav_snr_idx == len(db_vals) - 1:
111
+ wav_snr = db_vals[-1]
112
+ else:
113
+ wav_snr = db_vals[wav_snr_idx] + \
114
+ (v3 - g_vals[wav_snr_idx]) / (g_vals[wav_snr_idx + 1] - g_vals[wav_snr_idx]) * (db_vals[wav_snr_idx + 1] - db_vals[wav_snr_idx])
115
+
116
+ # Calculate SNR
117
+ dEng = sum(wav ** 2)
118
+ dFactor = 10 ** (wav_snr / 10)
119
+ dNoiseEng = dEng / (1 + dFactor) # Noise energy
120
+ dSigEng = dEng * dFactor / (1 + dFactor) # Signal energy
121
+ snr = 10 * np.log10(dSigEng / dNoiseEng)
122
+
123
+ return snr
124
+
125
+
126
+ def to_mono(x):
127
+ """
128
+ make sure we deal with a 1D array
129
+ """
130
+ if len(x.shape) == 2:
131
+ return lb.to_mono(np.transpose(x))
132
+ else:
133
+ return x
134
+
135
+
136
+ def clean_mls_ger():
137
+ clean_mls("mls_german", "de")
138
+
139
+
140
+ def clean_mls_fr():
141
+ clean_mls("mls_french", "fr")
142
+
143
+
144
+ def clean_mls_it():
145
+ clean_mls("mls_italian", "it")
146
+
147
+
148
+ def clean_mls_eng():
149
+ clean_mls("mls_english", "en")
150
+
151
+
152
+ def clean_mls(lang_dir, lang):
153
+ punco = Punctuator(lang=lang)
154
+ new_file = ""
155
+ shutil.copy(f"/mount/resources/speech/corpora/MultiLingLibriSpeech/{lang_dir}/train/transcripts.txt", f"/mount/resources/speech/corpora/MultiLingLibriSpeech/{lang_dir}/train/orig_transcripts.txt")
156
+ with open(f"/mount/resources/speech/corpora/MultiLingLibriSpeech/{lang_dir}/train/transcripts.txt", "r", encoding="utf8") as file:
157
+ sentence_list = file.read().split("\n")
158
+ for sentence in tqdm(sentence_list):
159
+ if sentence.strip() == "":
160
+ continue
161
+ sent_id = sentence.split()[0]
162
+ punc_sent = punco.punctuate_transcripts(" ".join(sentence.split()[1:]))
163
+ new_file = new_file + f"{sent_id}\t{punc_sent}\n"
164
+ with open(f"/mount/resources/speech/corpora/MultiLingLibriSpeech/{lang_dir}/train/transcripts.txt", "w", encoding="utf8") as file:
165
+ file.write(new_file)
166
+
167
+
168
+ def build_path_to_transcript_dict_gigaspeech():
169
+ path_to_transcript = dict()
170
+ root = "/mount/resources/speech/corpora/GigaSpeech/"
171
+ with open(os.path.join(root, "transcripts.txt"), "r", encoding="utf8") as file:
172
+ lookup = file.read()
173
+ for line in lookup.split("\n"):
174
+ if line.strip() != "":
175
+ norm_transcript = line.split("\t")[1]
176
+ wav_path = os.path.join(root, "wavs", line.split("\t")[0])
177
+ if os.path.exists(wav_path):
178
+ path_to_transcript[wav_path] = norm_transcript
179
+ return path_to_transcript
180
+
181
+
182
+ def split_list(lst, n):
183
+ if n <= 0:
184
+ return []
185
+
186
+ quotient, remainder = divmod(len(lst), n)
187
+ shards = [lst[i * quotient + min(i, remainder):(i + 1) * quotient + min(i + 1, remainder)] for i in range(n)]
188
+ return shards
189
+
190
+ def yonkus(shard):
191
+ yeet = UncleanYeeter()
192
+ yeet.create_list_of_samples_marked_for_deletion(shard)
193
+
194
+ if __name__ == '__main__':
195
+ os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
196
+ os.environ["CUDA_VISIBLE_DEVICES"] = "6"
197
+ print(f"Making GPU {os.environ['CUDA_VISIBLE_DEVICES']} the only visible device.")
198
+
199
+ list_of_files = os.listdir("/mount/resources/speech/corpora/GigaSpeech/wavs")
200
+ absolute_list_of_files = list()
201
+ for filo in list_of_files:
202
+ absolute_list_of_files.append(f"/mount/resources/speech/corpora/GigaSpeech/wavs/{filo}")
203
+ processes = list()
204
+ for sublist in split_list(absolute_list_of_files, 20):
205
+ processes.append(multiprocessing.Process(args=(sublist,), target=yonkus, daemon=True))
206
+ processes[-1].start()
207
+ for processo in processes:
208
+ processo.join()
209
+ # clean_mls_it()
210
+ # clean_mls_fr()
211
+ # clean_mls_ger()
212
+ # clean_mls_eng()