upload modeling_llava_phi.py
Browse files- modeling_llava_phi.py +252 -0
modeling_llava_phi.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import math
|
6 |
+
import pdb
|
7 |
+
from typing import Dict, Any
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from transformers import AutoConfig, AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
|
11 |
+
|
12 |
+
|
13 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
14 |
+
|
15 |
+
from .llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
16 |
+
|
17 |
+
from transformers.cache_utils import Cache, DynamicCache
|
18 |
+
|
19 |
+
from transformers.generation.utils import GenerationConfig
|
20 |
+
|
21 |
+
import sys
|
22 |
+
from .modeling_phi import PhiForCausalLM, PhiModel, PhiConfig
|
23 |
+
from .generation_utils import build_allava_input
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
################ Phi ###############################
|
29 |
+
|
30 |
+
class LlavaPhiConfig(PhiConfig):
|
31 |
+
model_type = "llava_phi"
|
32 |
+
|
33 |
+
class LlavaPhiModel(LlavaMetaModel, PhiModel):
|
34 |
+
config_class = LlavaPhiConfig
|
35 |
+
|
36 |
+
def __init__(self, config: PhiConfig):
|
37 |
+
super(LlavaPhiModel, self).__init__(config)
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
class LlavaPhiForCausalLM(PhiForCausalLM, LlavaMetaForCausalLM):
|
42 |
+
config_class = LlavaPhiConfig
|
43 |
+
|
44 |
+
def __init__(self, config, init_vision_encoder_from_ckpt=True):
|
45 |
+
# note that the default value is set to True for this inference version. In training `init_vision_encoder_from_ckpt` is default to be True.
|
46 |
+
config._attn_implementation = "flash_attention_2"
|
47 |
+
|
48 |
+
super(PhiForCausalLM, self).__init__(config)
|
49 |
+
# self.model is used in LlavaMetaForCausalLM.get_model(); self.transformer is used in PhiForCausalLM.forward()
|
50 |
+
self.model = LlavaPhiModel(config)
|
51 |
+
if hasattr(self.model, '_use_flash_attention_2'):
|
52 |
+
assert self.model._use_flash_attention_2, 'flash attn is not enabled. check it out!'
|
53 |
+
self.vocab_size = config.vocab_size
|
54 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
55 |
+
|
56 |
+
if init_vision_encoder_from_ckpt:
|
57 |
+
vision_tower = self.get_vision_tower()
|
58 |
+
print(f'loading from CLIP first. This should only be used at inference!!!')
|
59 |
+
vision_tower.load_model() #
|
60 |
+
|
61 |
+
# Initialize weights and apply final processing
|
62 |
+
self.post_init()
|
63 |
+
|
64 |
+
def get_model(self):
|
65 |
+
return self.model
|
66 |
+
|
67 |
+
def get_tokenizer(self):
|
68 |
+
return self.tokenizer
|
69 |
+
|
70 |
+
def get_processor(self):
|
71 |
+
return self.model.vision_tower.image_processor
|
72 |
+
|
73 |
+
|
74 |
+
def forward(
|
75 |
+
self,
|
76 |
+
input_ids: torch.LongTensor = None,
|
77 |
+
attention_mask: Optional[torch.Tensor] = None,
|
78 |
+
position_ids: Optional[torch.LongTensor] = None,
|
79 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
80 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
81 |
+
labels: Optional[torch.LongTensor] = None,
|
82 |
+
use_cache: Optional[bool] = None,
|
83 |
+
output_attentions: Optional[bool] = None,
|
84 |
+
output_hidden_states: Optional[bool] = None,
|
85 |
+
images: Optional[torch.FloatTensor] = None,
|
86 |
+
return_dict: Optional[bool] = None,
|
87 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
88 |
+
|
89 |
+
|
90 |
+
if inputs_embeds is None:
|
91 |
+
(
|
92 |
+
input_ids,
|
93 |
+
position_ids,
|
94 |
+
attention_mask,
|
95 |
+
past_key_values,
|
96 |
+
inputs_embeds,
|
97 |
+
labels
|
98 |
+
# ) = self.prepare_inputs_labels_for_multimodal(
|
99 |
+
) = self.prepare_inputs_labels_for_multimodal_new(
|
100 |
+
input_ids,
|
101 |
+
position_ids,
|
102 |
+
attention_mask,
|
103 |
+
past_key_values,
|
104 |
+
labels,
|
105 |
+
images
|
106 |
+
)
|
107 |
+
|
108 |
+
# pdb.set_trace()
|
109 |
+
return super().forward(
|
110 |
+
input_ids=input_ids,
|
111 |
+
attention_mask=attention_mask,
|
112 |
+
position_ids=position_ids,
|
113 |
+
past_key_values=past_key_values,
|
114 |
+
inputs_embeds=inputs_embeds,
|
115 |
+
labels=labels,
|
116 |
+
use_cache=use_cache,
|
117 |
+
output_attentions=output_attentions,
|
118 |
+
output_hidden_states=output_hidden_states,
|
119 |
+
return_dict=return_dict
|
120 |
+
)
|
121 |
+
|
122 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs):
|
123 |
+
'''
|
124 |
+
This function is called for each token at inference
|
125 |
+
'''
|
126 |
+
# pdb.set_trace()
|
127 |
+
images = kwargs.pop("images", None)
|
128 |
+
|
129 |
+
####################################################
|
130 |
+
# lines from modeling_phi.py
|
131 |
+
####################################################
|
132 |
+
|
133 |
+
if past_key_values is not None:
|
134 |
+
if isinstance(past_key_values, Cache):
|
135 |
+
cache_length = past_key_values.get_seq_length()
|
136 |
+
past_length = past_key_values.seen_tokens
|
137 |
+
max_cache_length = past_key_values.get_max_length()
|
138 |
+
else:
|
139 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
140 |
+
max_cache_length = None
|
141 |
+
|
142 |
+
# Keep only the unprocessed tokens:
|
143 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
144 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
145 |
+
# input)
|
146 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
147 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
148 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
149 |
+
# input_ids based on the past_length.
|
150 |
+
elif past_length < input_ids.shape[1]:
|
151 |
+
input_ids = input_ids[:, past_length:]
|
152 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
153 |
+
elif past_length >= input_ids.shape[1]:
|
154 |
+
input_ids = input_ids[:, [-1]] # only keep the last one!
|
155 |
+
|
156 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
157 |
+
if (
|
158 |
+
max_cache_length is not None
|
159 |
+
and attention_mask is not None
|
160 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
161 |
+
):
|
162 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
163 |
+
|
164 |
+
position_ids = kwargs.get("position_ids", None)
|
165 |
+
if attention_mask is not None and position_ids is None:
|
166 |
+
# create position_ids on the fly for batch generation
|
167 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
168 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
169 |
+
if past_key_values:
|
170 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
171 |
+
|
172 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
173 |
+
if inputs_embeds is not None and past_key_values is None:
|
174 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
175 |
+
else:
|
176 |
+
model_inputs = {"input_ids": input_ids}
|
177 |
+
|
178 |
+
model_inputs.update(
|
179 |
+
{
|
180 |
+
"position_ids": position_ids,
|
181 |
+
"past_key_values": past_key_values,
|
182 |
+
"use_cache": kwargs.get("use_cache"),
|
183 |
+
"attention_mask": attention_mask,
|
184 |
+
}
|
185 |
+
)
|
186 |
+
####################################################
|
187 |
+
# end of lines from modeling_phi.py
|
188 |
+
####################################################
|
189 |
+
|
190 |
+
|
191 |
+
if images is not None:
|
192 |
+
model_inputs['images'] = images
|
193 |
+
return model_inputs
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
+
def chat(
|
199 |
+
self,
|
200 |
+
texts: Optional[str | list[list[str, str]]],
|
201 |
+
images: Optional[str | list[str]] = None,
|
202 |
+
history: Optional[list[str]] = None,
|
203 |
+
stream = False,
|
204 |
+
return_history = False,
|
205 |
+
**kwargs
|
206 |
+
):
|
207 |
+
'''
|
208 |
+
texts: if `str`, then generate for a single round; if list[dict],
|
209 |
+
images: str (optional), local path to an image.
|
210 |
+
'''
|
211 |
+
use_cache = kwargs.pop('use_cache', True)
|
212 |
+
|
213 |
+
|
214 |
+
############################
|
215 |
+
# merge history
|
216 |
+
############################
|
217 |
+
input_ids, image_tensors, history = build_allava_input(
|
218 |
+
tokenizer = self.get_tokenizer(),
|
219 |
+
processor = self.get_processor(),
|
220 |
+
texts = texts,
|
221 |
+
images = images,
|
222 |
+
history=history,
|
223 |
+
return_history=return_history,
|
224 |
+
device = self.device
|
225 |
+
)
|
226 |
+
|
227 |
+
############################
|
228 |
+
# generate response
|
229 |
+
############################
|
230 |
+
# with torch.autocast(device_type='cuda'):
|
231 |
+
if 'cuda' in str(self.device):
|
232 |
+
device_type = 'cuda'
|
233 |
+
else:
|
234 |
+
device_type = 'cpu'
|
235 |
+
|
236 |
+
with torch.autocast(device_type=device_type, dtype=self.dtype):
|
237 |
+
output_ids = self.generate(
|
238 |
+
inputs=input_ids,
|
239 |
+
images=image_tensors,
|
240 |
+
use_cache=use_cache,
|
241 |
+
**kwargs)
|
242 |
+
|
243 |
+
answer = self.get_tokenizer().decode(output_ids[0, input_ids.shape[1]:], skip_special_tokens=True).strip()
|
244 |
+
|
245 |
+
if return_history:
|
246 |
+
history[-1][-1] = answer
|
247 |
+
return answer, history
|
248 |
+
return answer
|
249 |
+
|
250 |
+
|
251 |
+
AutoConfig.register("llava_phi", LlavaPhiConfig)
|
252 |
+
AutoModelForCausalLM.register(LlavaPhiConfig, LlavaPhiForCausalLM)
|