jymcc commited on
Commit
6993f25
·
1 Parent(s): 5f8c9fe
Files changed (3) hide show
  1. config.json +1 -1
  2. generation_utils.py +0 -45
  3. modeling_baichuan.py +401 -277
config.json CHANGED
@@ -1,6 +1,6 @@
1
  {
2
  "_from_model_config": true,
3
- "_name_or_path": "/mntcephfs/data/med/zhanghongbo/yaojishi/cjy/ckpts/huatuo2_13B_v3_final/checkpoint-0-8706/tfmr",
4
  "architectures": [
5
  "BaichuanForCausalLM"
6
  ],
 
1
  {
2
  "_from_model_config": true,
3
+ "_name_or_path": "HuatuoGPT2-13B",
4
  "architectures": [
5
  "BaichuanForCausalLM"
6
  ],
generation_utils.py CHANGED
@@ -3,51 +3,6 @@ from queue import Queue
3
 
4
  import torch
5
 
6
-
7
- # def build_chat_input(model, tokenizer, messages: List[dict], max_new_tokens: int=0):
8
- # def _parse_messages(messages, split_role="user"):
9
- # system, rounds = "", []
10
- # round = []
11
- # for i, message in enumerate(messages):
12
- # if message["role"] == "system":
13
- # assert i == 0
14
- # system = message["content"]
15
- # continue
16
- # if message["role"] == split_role and round:
17
- # rounds.append(round)
18
- # round = []
19
- # round.append(message)
20
- # if round:
21
- # rounds.append(round)
22
- # return system, rounds
23
-
24
- # max_new_tokens = max_new_tokens or model.generation_config.max_new_tokens
25
- # max_input_tokens = model.config.model_max_length - max_new_tokens
26
- # system, rounds = _parse_messages(messages, split_role="user")
27
- # system_tokens = tokenizer.encode(system)
28
- # max_history_tokens = max_input_tokens - len(system_tokens)
29
-
30
- # history_tokens = []
31
- # for round in rounds[::-1]:
32
- # round_tokens = []
33
- # for message in round:
34
- # if message["role"] == "user":
35
- # round_tokens.append(model.generation_config.user_token_id)
36
- # else:
37
- # round_tokens.append(model.generation_config.assistant_token_id)
38
- # round_tokens.extend(tokenizer.encode(message["content"]))
39
- # if len(history_tokens) == 0 or len(history_tokens) + len(round_tokens) <= max_history_tokens:
40
- # history_tokens = round_tokens + history_tokens # concat left
41
- # if len(history_tokens) < max_history_tokens:
42
- # continue
43
- # break
44
-
45
- # input_tokens = system_tokens + history_tokens
46
- # if messages[-1]["role"] != "assistant":
47
- # input_tokens.append(model.generation_config.assistant_token_id)
48
- # input_tokens = input_tokens[-max_input_tokens:] # truncate left
49
- # return torch.LongTensor([input_tokens]).to(model.device)
50
-
51
  # for HuatuoGPT2
52
  def build_chat_input(model, tokenizer, messages: List[dict], max_new_tokens: int=0):
53
  def _parse_messages(messages, split_role="user"):
 
3
 
4
  import torch
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  # for HuatuoGPT2
7
  def build_chat_input(model, tokenizer, messages: List[dict], max_new_tokens: int=0):
8
  def _parse_messages(messages, split_role="user"):
modeling_baichuan.py CHANGED
@@ -1,45 +1,26 @@
1
- # Copyright 2023 Baichuan Inc. All Rights Reserved.
2
-
3
- # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
4
- #
5
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
- # and OPT implementations in this library. It has been modified from its
7
- # original forms to accommodate minor architectural differences compared
8
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
- #
10
- # Licensed under the Apache License, Version 2.0 (the "License");
11
- # you may not use this file except in compliance with the License.
12
- # You may obtain a copy of the License at
13
- #
14
- # http://www.apache.org/licenses/LICENSE-2.0
15
- #
16
- # Unless required by applicable law or agreed to in writing, software
17
- # distributed under the License is distributed on an "AS IS" BASIS,
18
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
- # See the License for the specific language governing permissions and
20
- # limitations under the License.
21
-
22
 
23
  from .configuration_baichuan import BaichuanConfig
24
  from .generation_utils import build_chat_input, TextIterStreamer
25
 
26
  import math
27
- from typing import List, Optional, Tuple, Union
28
  from threading import Thread
 
29
 
30
  import torch
31
- import torch.utils.checkpoint
32
  from torch import nn
33
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
34
  from torch.nn import functional as F
35
  from transformers import PreTrainedModel, PretrainedConfig
36
  from transformers.activations import ACT2FN
37
- from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
38
  from transformers.generation.utils import GenerationConfig
 
39
  from transformers.utils import logging, ContextManagers
40
 
41
  import os
42
  from contextlib import contextmanager
 
 
43
  logger = logging.get_logger(__name__)
44
 
45
  try:
@@ -51,169 +32,138 @@ except ImportError:
51
  )
52
 
53
 
54
- # Copied from transformers.models.bart.modeling_bart._make_causal_mask
55
- def _make_causal_mask(
56
- input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
57
- ):
58
- """
59
- Make causal mask used for bi-directional self-attention.
60
- """
61
- bsz, tgt_len = input_ids_shape
62
- mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
63
- mask_cond = torch.arange(mask.size(-1), device=device)
64
- mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
65
- mask = mask.to(dtype)
66
-
67
- if past_key_values_length > 0:
68
- mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
69
- return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
70
-
71
- def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
72
- """
73
- Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
74
- """
75
- if len(mask.size()) == 3:
76
- bsz, src_len, _ = mask.size()
77
- tgt_len = tgt_len if tgt_len is not None else src_len
78
- expanded_mask = mask[:,None,:,:].expand(bsz, 1, tgt_len, src_len).to(dtype)
79
  else:
80
- bsz, src_len = mask.size()
81
- tgt_len = tgt_len if tgt_len is not None else src_len
82
- expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
 
 
 
 
 
 
 
 
83
 
84
- inverted_mask = 1.0 - expanded_mask
 
 
 
 
85
 
86
- return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
87
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
- class RMSNorm(nn.Module):
90
- def __init__(self, hidden_size, eps=1e-6):
91
- """
92
- RMSNorm is equivalent to T5LayerNorm
93
- """
94
  super().__init__()
95
- self.weight = nn.Parameter(torch.ones(hidden_size))
96
- self.variance_epsilon = eps
97
 
98
  def forward(self, hidden_states):
99
  variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
100
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
101
 
102
- # convert into half-precision if necessary
103
  if self.weight.dtype in [torch.float16, torch.bfloat16]:
104
  hidden_states = hidden_states.to(self.weight.dtype)
105
 
106
  return self.weight * hidden_states
107
 
108
 
109
- class RotaryEmbedding(torch.nn.Module):
110
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
111
- super().__init__()
112
- self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
113
- self.max_seq_len_cached = max_position_embeddings
114
- t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
115
- freqs = torch.outer(t, self.inv_freq)
116
- emb = torch.cat((freqs, freqs), dim=-1)
117
- self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32)
118
- self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32)
119
- def forward(self, x, seq_len=None):
120
- # x: [bs, num_attention_heads, seq_len, head_size]
121
- # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
122
- if seq_len > self.max_seq_len_cached:
123
- self.max_seq_len_cached = seq_len
124
- t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
125
- freqs = torch.outer(t, self.inv_freq)
126
- emb = torch.cat((freqs, freqs), dim=-1)
127
- self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32).to(x.device)
128
- self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32).to(x.device)
129
- elif self.cos_cached.device != x.device:
130
- self.cos_cached = self.cos_cached.to(x.device)
131
- self.sin_cached = self.sin_cached.to(x.device)
132
- return (
133
- self.cos_cached[:, :, :seq_len, ...],
134
- self.sin_cached[:, :, :seq_len, ...],
135
- )
136
-
137
-
138
- def rotate_half(x):
139
- """Rotates half the hidden dims of the input."""
140
- x1 = x[..., : x.shape[-1] // 2]
141
- x2 = x[..., x.shape[-1] // 2:]
142
- return torch.cat((-x2, x1), dim=-1)
143
-
144
-
145
- def apply_rotary_pos_emb(q, k, cos_, sin_, position_ids):
146
- cos = cos_.squeeze(1).squeeze(0) # [seq_len, dim]
147
- sin = sin_.squeeze(1).squeeze(0) # [seq_len, dim]
148
- cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
149
- sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
150
- q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin)
151
- k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin)
152
- return q_embed.to(q.dtype), k_embed.to(k.dtype)
153
-
154
-
155
- class MLP(nn.Module):
156
  def __init__(
157
- self,
158
- hidden_size: int,
159
- intermediate_size: int,
160
- hidden_act: str,
161
  ):
162
  super().__init__()
163
- self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
164
- self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
165
- self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
166
  self.act_fn = ACT2FN[hidden_act]
167
 
168
  def forward(self, x):
169
  return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
170
 
171
 
172
- class Attention(nn.Module):
173
- """Multi-headed attention from 'Attention Is All You Need' paper"""
174
  def __init__(self, config: BaichuanConfig):
175
  super().__init__()
176
  self.config = config
177
  self.hidden_size = config.hidden_size
178
  self.num_heads = config.num_attention_heads
179
  self.head_dim = self.hidden_size // self.num_heads
180
- self.max_position_embeddings = config.max_position_embeddings
181
 
182
  if (self.head_dim * self.num_heads) != self.hidden_size:
183
  raise ValueError(
184
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
185
- f" and `num_heads`: {self.num_heads})."
186
  )
187
- self.W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
188
- self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
189
- self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
 
 
 
190
 
191
  def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
192
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
 
 
 
 
193
 
194
  def forward(
195
- self,
196
- hidden_states: torch.Tensor,
197
- attention_mask: Optional[torch.Tensor] = None,
198
- position_ids: Optional[torch.LongTensor] = None,
199
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
200
- output_attentions: bool = False,
201
- use_cache: bool = False,
202
  ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
203
  bsz, q_len, _ = hidden_states.size()
204
 
205
  proj = self.W_pack(hidden_states)
206
- proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
207
- query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
208
- key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
209
- value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 
 
 
 
 
 
 
 
 
 
 
210
 
211
  kv_seq_len = key_states.shape[-2]
212
  if past_key_value is not None:
213
  kv_seq_len += past_key_value[0].shape[-2]
214
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
215
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
216
- # [bsz, nh, t, hd]
217
 
218
  if past_key_value is not None:
219
  # reuse k, v, self_attention
@@ -223,16 +173,35 @@ class Attention(nn.Module):
223
  past_key_value = (key_states, value_states) if use_cache else None
224
  if xops is not None and self.training:
225
  attn_weights = None
226
- query_states = query_states.transpose(1, 2)
227
- key_states = key_states.transpose(1, 2)
228
- value_states = value_states.transpose(1, 2)
229
- attn_output = xops.memory_efficient_attention(
230
- query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()
231
- )
232
- else:
233
  with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
234
  attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = attention_mask)
235
  attn_output = attn_output.transpose(1, 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236
  attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
237
  attn_output = self.o_proj(attn_output)
238
 
@@ -242,29 +211,31 @@ class Attention(nn.Module):
242
  return attn_output, attn_weights, past_key_value
243
 
244
 
245
- class DecoderLayer(nn.Module):
246
  def __init__(self, config: BaichuanConfig):
247
  super().__init__()
248
  self.hidden_size = config.hidden_size
249
- self.self_attn = Attention(config=config)
250
  self.mlp = MLP(
251
  hidden_size=self.hidden_size,
252
  intermediate_size=config.intermediate_size,
253
  hidden_act=config.hidden_act,
254
  )
255
- self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
256
- self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
 
 
257
 
258
  def forward(
259
- self,
260
- hidden_states: torch.Tensor,
261
- attention_mask: Optional[torch.Tensor] = None,
262
- position_ids: Optional[torch.LongTensor] = None,
263
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
264
- output_attentions: Optional[bool] = False,
265
- use_cache: Optional[bool] = False,
266
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
267
-
268
  residual = hidden_states
269
 
270
  hidden_states = self.input_layernorm(hidden_states)
@@ -273,7 +244,6 @@ class DecoderLayer(nn.Module):
273
  hidden_states, self_attn_weights, present_key_value = self.self_attn(
274
  hidden_states=hidden_states,
275
  attention_mask=attention_mask,
276
- position_ids=position_ids,
277
  past_key_value=past_key_value,
278
  output_attentions=output_attentions,
279
  use_cache=use_cache,
@@ -288,9 +258,6 @@ class DecoderLayer(nn.Module):
288
 
289
  outputs = (hidden_states,)
290
 
291
- if output_attentions:
292
- outputs += (self_attn_weights,)
293
-
294
  if use_cache:
295
  outputs += (present_key_value,)
296
 
@@ -301,16 +268,16 @@ class BaichuanPreTrainedModel(PreTrainedModel):
301
  config_class = BaichuanConfig
302
  base_model_prefix = "model"
303
  supports_gradient_checkpointing = True
304
- _no_split_modules = ["DecoderLayer"]
305
  _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
306
 
307
  def _init_weights(self, module):
308
  std = self.config.initializer_range
309
- if isinstance(module, nn.Linear):
310
  module.weight.data.normal_(mean=0.0, std=std)
311
  if module.bias is not None:
312
  module.bias.data.zero_()
313
- elif isinstance(module, nn.Embedding):
314
  module.weight.data.normal_(mean=0.0, std=std)
315
  if module.padding_idx is not None:
316
  module.weight.data[module.padding_idx].zero_()
@@ -325,14 +292,20 @@ class BaichuanModel(BaichuanPreTrainedModel):
325
  super().__init__(config)
326
  self.padding_idx = config.pad_token_id
327
  self.vocab_size = config.vocab_size
 
 
 
 
 
 
 
 
328
 
329
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
330
- self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
331
- self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
332
-
333
- self.gradient_checkpointing = False
334
- # Initialize weights and apply final processing
335
  self.post_init()
 
 
 
336
 
337
  def get_input_embeddings(self):
338
  return self.embed_tokens
@@ -340,86 +313,118 @@ class BaichuanModel(BaichuanPreTrainedModel):
340
  def set_input_embeddings(self, value):
341
  self.embed_tokens = value
342
 
343
- # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
344
- def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
345
- # create causal mask
346
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
347
- combined_attention_mask = None
348
- if input_shape[-1] > 1:
349
- combined_attention_mask = _make_causal_mask(
350
- input_shape,
351
- inputs_embeds.dtype,
352
- device=inputs_embeds.device,
353
- past_key_values_length=past_key_values_length,
354
  )
355
-
356
- if attention_mask is not None:
357
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
358
- expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
359
- inputs_embeds.device
360
  )
361
- combined_attention_mask = (
362
- expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
 
363
  )
364
-
365
- return combined_attention_mask
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
366
 
367
  def forward(
368
- self,
369
- input_ids: torch.LongTensor = None,
370
- attention_mask: Optional[torch.Tensor] = None,
371
- position_ids: Optional[torch.LongTensor] = None,
372
- past_key_values: Optional[List[torch.FloatTensor]] = None,
373
- inputs_embeds: Optional[torch.FloatTensor] = None,
374
- use_cache: Optional[bool] = None,
375
- output_attentions: Optional[bool] = None,
376
- output_hidden_states: Optional[bool] = None,
377
- return_dict: Optional[bool] = None,
378
  ) -> Union[Tuple, BaseModelOutputWithPast]:
379
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
380
- output_hidden_states = (
381
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
382
- )
383
- use_cache = use_cache if use_cache is not None else self.config.use_cache
384
-
385
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
386
-
387
- # retrieve input_ids and inputs_embeds
388
  if input_ids is not None and inputs_embeds is not None:
389
- raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
 
 
390
  elif input_ids is not None:
391
  batch_size, seq_length = input_ids.shape
392
  elif inputs_embeds is not None:
393
  batch_size, seq_length, _ = inputs_embeds.shape
394
  else:
395
- raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
 
 
 
 
396
 
397
  seq_length_with_past = seq_length
398
- past_key_values_length = 0
399
 
400
  if past_key_values is not None:
401
  past_key_values_length = past_key_values[0][0].shape[2]
402
  seq_length_with_past = seq_length_with_past + past_key_values_length
403
 
404
- if position_ids is None:
405
- device = input_ids.device if input_ids is not None else inputs_embeds.device
406
- position_ids = torch.arange(
407
- past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
408
- )
409
- position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
410
- else:
411
- position_ids = position_ids.view(-1, seq_length).long()
412
-
413
  if inputs_embeds is None:
414
  inputs_embeds = self.embed_tokens(input_ids)
415
- # embed positions
416
- if attention_mask is None:
417
- attention_mask = torch.ones(
418
- (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419
  )
420
- attention_mask = self._prepare_decoder_attention_mask(
421
- attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
422
- )
 
 
 
 
423
 
424
  hidden_states = inputs_embeds
425
 
@@ -439,7 +444,9 @@ class BaichuanModel(BaichuanPreTrainedModel):
439
  if output_hidden_states:
440
  all_hidden_states += (hidden_states,)
441
 
442
- past_key_value = past_key_values[idx] if past_key_values is not None else None
 
 
443
 
444
  if self.gradient_checkpointing and self.training:
445
 
@@ -454,14 +461,12 @@ class BaichuanModel(BaichuanPreTrainedModel):
454
  create_custom_forward(decoder_layer),
455
  hidden_states,
456
  attention_mask,
457
- position_ids,
458
  None,
459
  )
460
  else:
461
  layer_outputs = decoder_layer(
462
  hidden_states,
463
  attention_mask=attention_mask,
464
- position_ids=position_ids,
465
  past_key_value=past_key_value,
466
  output_attentions=output_attentions,
467
  use_cache=use_cache,
@@ -483,7 +488,11 @@ class BaichuanModel(BaichuanPreTrainedModel):
483
 
484
  next_cache = next_decoder_cache if use_cache else None
485
  if not return_dict:
486
- return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
 
 
 
 
487
  return BaseModelOutputWithPast(
488
  last_hidden_state=hidden_states,
489
  past_key_values=next_cache,
@@ -505,7 +514,7 @@ class NormHead(nn.Module):
505
  self.first_flag = True
506
  elif self.first_flag:
507
  self.first_flag = False
508
- self.weight.data = nn.functional.normalize(self.weight)
509
  norm_weight = self.weight
510
  else:
511
  norm_weight = self.weight
@@ -523,17 +532,18 @@ def no_init_weights(_enable=True):
523
  finally:
524
  _init_weights = old_init_weights
525
 
 
526
  class BaichuanForCausalLM(BaichuanPreTrainedModel):
527
  def __init__(self, config, *model_args, **model_kwargs):
528
  super().__init__(config, *model_args, **model_kwargs)
529
  self.model = BaichuanModel(config)
530
-
531
  self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
 
532
  if hasattr(config, "quantization_config") and isinstance(config.quantization_config, dict) and config.quantization_config.get('load_in_4bit', False):
533
  try:
534
  from .quantizer import quantize_offline, init_model_weight_int4
535
  except ImportError:
536
- raise ImportError(f"Needs QLinear to run quantize.")
537
  quantize_offline(self, 4)
538
  # Initialize weights and apply final processing
539
  self.post_init()
@@ -571,6 +581,7 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
571
  use_safetensors: bool = None,
572
  **kwargs,
573
  ):
 
574
  # Load config if we don't provide a configuration
575
  if not isinstance(config, PretrainedConfig):
576
  config_path = config if config is not None else pretrained_model_name_or_path
@@ -591,36 +602,97 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
591
  )
592
  else:
593
  model_kwargs = kwargs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
594
  return super(BaichuanForCausalLM, cls).from_pretrained(pretrained_model_name_or_path, *model_args,
595
  config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes,
596
  force_download=force_download, local_files_only=local_files_only, token=token, revision=revision,
597
- use_safetensors=use_safetensors, **kwargs)
598
 
599
  def forward(
600
- self,
601
- input_ids: torch.LongTensor = None,
602
- attention_mask: Optional[torch.Tensor] = None,
603
- position_ids: Optional[torch.LongTensor] = None,
604
- past_key_values: Optional[List[torch.FloatTensor]] = None,
605
- inputs_embeds: Optional[torch.FloatTensor] = None,
606
- labels: Optional[torch.LongTensor] = None,
607
- use_cache: Optional[bool] = None,
608
- output_attentions: Optional[bool] = None,
609
- output_hidden_states: Optional[bool] = None,
610
- return_dict: Optional[bool] = None,
611
  ) -> Union[Tuple, CausalLMOutputWithPast]:
612
-
613
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
614
- output_hidden_states = (
615
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
616
  )
617
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
618
 
619
  # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
620
  outputs = self.model(
621
  input_ids=input_ids,
622
  attention_mask=attention_mask,
623
- position_ids=position_ids,
624
  past_key_values=past_key_values,
625
  inputs_embeds=inputs_embeds,
626
  use_cache=use_cache,
@@ -658,20 +730,24 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
658
  attentions=outputs.attentions,
659
  )
660
 
 
 
 
 
 
 
 
661
  def prepare_inputs_for_generation(
662
- self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
 
 
 
 
 
663
  ):
664
  if past_key_values:
665
  input_ids = input_ids[:, -1:]
666
 
667
- position_ids = kwargs.get("position_ids", None)
668
- if attention_mask is not None and position_ids is None:
669
- # create position_ids on the fly for batch generation
670
- position_ids = attention_mask.long().cumsum(-1) - 1
671
- position_ids.masked_fill_(attention_mask == 0, 1)
672
- if past_key_values:
673
- position_ids = position_ids[:, -1].unsqueeze(-1)
674
-
675
  # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
676
  if inputs_embeds is not None and past_key_values is None:
677
  model_inputs = {"inputs_embeds": inputs_embeds}
@@ -680,7 +756,6 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
680
 
681
  model_inputs.update(
682
  {
683
- "position_ids": position_ids,
684
  "past_key_values": past_key_values,
685
  "use_cache": kwargs.get("use_cache"),
686
  "attention_mask": attention_mask,
@@ -690,22 +765,71 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
690
 
691
  @staticmethod
692
  def _reorder_cache(past_key_values, beam_idx):
693
- reordered_past = ()
694
- for layer_past in past_key_values:
695
- reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
696
- return reordered_past
697
 
698
- def quantize(self, bits: int):
699
- try:
700
- from .quantizer import quantize_online
701
- except ImportError:
702
- raise ImportError(f"Needs QLinear to run quantize.")
703
- return quantize_online(self, bits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704
 
705
  def chat(self, tokenizer, messages: List[dict], stream=False,
706
  generation_config: Optional[GenerationConfig]=None):
707
  generation_config = generation_config or self.generation_config
708
  input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
709
  if stream:
710
  streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
711
  Thread(target=self.generate, kwargs=dict(
 
1
+ # Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  from .configuration_baichuan import BaichuanConfig
4
  from .generation_utils import build_chat_input, TextIterStreamer
5
 
6
  import math
 
7
  from threading import Thread
8
+ from typing import List, Optional, Tuple, Union
9
 
10
  import torch
 
11
  from torch import nn
12
+ from torch.nn import CrossEntropyLoss
13
  from torch.nn import functional as F
14
  from transformers import PreTrainedModel, PretrainedConfig
15
  from transformers.activations import ACT2FN
 
16
  from transformers.generation.utils import GenerationConfig
17
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
18
  from transformers.utils import logging, ContextManagers
19
 
20
  import os
21
  from contextlib import contextmanager
22
+ from accelerate import init_empty_weights
23
+
24
  logger = logging.get_logger(__name__)
25
 
26
  try:
 
32
  )
33
 
34
 
35
+ def _get_interleave(n):
36
+ def _get_interleave_power_of_2(n):
37
+ start = 2 ** (-(2 ** -(math.log2(n) - 3)))
38
+ ratio = start
39
+ return [start * ratio**i for i in range(n)]
40
+
41
+ if math.log2(n).is_integer():
42
+ return _get_interleave_power_of_2(n)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  else:
44
+ closest_power_of_2 = 2 ** math.floor(math.log2(n))
45
+ return (
46
+ _get_interleave_power_of_2(closest_power_of_2)
47
+ + _get_interleave(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
48
+ )
49
+
50
+
51
+ def _fill_with_neg_inf(t):
52
+ """FP16-compatible function that fills a tensor with -inf."""
53
+ return t.float().fill_(float("-inf")).type_as(t)
54
+
55
 
56
+ def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
57
+ _future_mask = torch.triu(_fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1)
58
+ _future_mask = _future_mask.unsqueeze(0) + alibi
59
+ new_future_mask = _future_mask.to(tensor)
60
+ return new_future_mask[: tensor.shape[0] * attn_heads, :maxpos, :maxpos]
61
 
 
62
 
63
+ def _gen_alibi_mask(tensor, n_head, max_pos):
64
+ slopes = torch.Tensor(_get_interleave(n_head))
65
+ position_point = torch.arange(max_pos) - max_pos + 1
66
+ position_point = position_point.unsqueeze(0).unsqueeze(0).expand(n_head, -1, -1)
67
+ diag = torch.diag(position_point[0])
68
+ position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(-1, -2)
69
+ alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point
70
+ alibi = alibi.view(n_head, 1, max_pos)
71
+ alibi_mask = torch.triu(_fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1)
72
+ alibi_mask = alibi_mask.unsqueeze(0) + alibi
73
+ return alibi_mask
74
 
75
+
76
+ class RMSNorm(torch.nn.Module):
77
+ def __init__(self, hidden_size, epsilon=1e-6):
 
 
78
  super().__init__()
79
+ self.weight = torch.nn.Parameter(torch.empty(hidden_size))
80
+ self.epsilon = epsilon
81
 
82
  def forward(self, hidden_states):
83
  variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
84
+ hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
85
 
86
+ # convert into half-precision
87
  if self.weight.dtype in [torch.float16, torch.bfloat16]:
88
  hidden_states = hidden_states.to(self.weight.dtype)
89
 
90
  return self.weight * hidden_states
91
 
92
 
93
+ class MLP(torch.nn.Module):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  def __init__(
95
+ self,
96
+ hidden_size: int,
97
+ intermediate_size: int,
98
+ hidden_act: str,
99
  ):
100
  super().__init__()
101
+ self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
102
+ self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
103
+ self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
104
  self.act_fn = ACT2FN[hidden_act]
105
 
106
  def forward(self, x):
107
  return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
108
 
109
 
110
+ class BaichuanAttention(torch.nn.Module):
 
111
  def __init__(self, config: BaichuanConfig):
112
  super().__init__()
113
  self.config = config
114
  self.hidden_size = config.hidden_size
115
  self.num_heads = config.num_attention_heads
116
  self.head_dim = self.hidden_size // self.num_heads
117
+ self.max_position_embeddings = config.model_max_length
118
 
119
  if (self.head_dim * self.num_heads) != self.hidden_size:
120
  raise ValueError(
121
+ f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
 
122
  )
123
+ self.W_pack = torch.nn.Linear(
124
+ self.hidden_size, 3 * self.hidden_size, bias=False
125
+ )
126
+ self.o_proj = torch.nn.Linear(
127
+ self.num_heads * self.head_dim, self.hidden_size, bias=False
128
+ )
129
 
130
  def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
131
+ return (
132
+ tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
133
+ .transpose(1, 2)
134
+ .contiguous()
135
+ )
136
 
137
  def forward(
138
+ self,
139
+ hidden_states: torch.Tensor,
140
+ attention_mask: Optional[torch.Tensor] = None,
141
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
142
+ output_attentions: bool = False,
143
+ use_cache: bool = False,
 
144
  ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
145
  bsz, q_len, _ = hidden_states.size()
146
 
147
  proj = self.W_pack(hidden_states)
148
+ proj = (
149
+ proj.unflatten(-1, (3, self.hidden_size))
150
+ .unsqueeze(0)
151
+ .transpose(0, -2)
152
+ .squeeze(-2)
153
+ )
154
+ query_states = (
155
+ proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
156
+ )
157
+ key_states = (
158
+ proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
159
+ )
160
+ value_states = (
161
+ proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
162
+ )
163
 
164
  kv_seq_len = key_states.shape[-2]
165
  if past_key_value is not None:
166
  kv_seq_len += past_key_value[0].shape[-2]
 
 
 
167
 
168
  if past_key_value is not None:
169
  # reuse k, v, self_attention
 
173
  past_key_value = (key_states, value_states) if use_cache else None
174
  if xops is not None and self.training:
175
  attn_weights = None
176
+ # query_states = query_states.transpose(1, 2)
177
+ # key_states = key_states.transpose(1, 2)
178
+ # value_states = value_states.transpose(1, 2)
179
+ # attn_output = xops.memory_efficient_attention(
180
+ # query_states, key_states, value_states, attn_bias=attention_mask
181
+ # )
 
182
  with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
183
  attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = attention_mask)
184
  attn_output = attn_output.transpose(1, 2)
185
+ else:
186
+ attn_weights = torch.matmul(
187
+ query_states, key_states.transpose(2, 3)
188
+ ) / math.sqrt(self.head_dim)
189
+
190
+ if attention_mask is not None:
191
+ if q_len == 1: # inference with cache
192
+ if len(attention_mask.size()) == 4:
193
+ attention_mask = attention_mask[:, :, -1:, :]
194
+ else:
195
+ attention_mask = attention_mask[:, -1:, :]
196
+ attn_weights = attn_weights + attention_mask
197
+ attn_weights = torch.max(
198
+ attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
199
+ )
200
+
201
+ attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
202
+ attn_output = torch.matmul(attn_weights, value_states)
203
+
204
+ attn_output = attn_output.transpose(1, 2)
205
  attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
206
  attn_output = self.o_proj(attn_output)
207
 
 
211
  return attn_output, attn_weights, past_key_value
212
 
213
 
214
+ class BaichuanLayer(torch.nn.Module):
215
  def __init__(self, config: BaichuanConfig):
216
  super().__init__()
217
  self.hidden_size = config.hidden_size
218
+ self.self_attn = BaichuanAttention(config=config)
219
  self.mlp = MLP(
220
  hidden_size=self.hidden_size,
221
  intermediate_size=config.intermediate_size,
222
  hidden_act=config.hidden_act,
223
  )
224
+ self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
225
+ self.post_attention_layernorm = RMSNorm(
226
+ config.hidden_size, epsilon=config.rms_norm_eps
227
+ )
228
 
229
  def forward(
230
+ self,
231
+ hidden_states: torch.Tensor,
232
+ attention_mask: Optional[torch.Tensor] = None,
233
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
234
+ output_attentions: Optional[bool] = False,
235
+ use_cache: Optional[bool] = False,
236
+ ) -> Tuple[
237
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
238
+ ]:
239
  residual = hidden_states
240
 
241
  hidden_states = self.input_layernorm(hidden_states)
 
244
  hidden_states, self_attn_weights, present_key_value = self.self_attn(
245
  hidden_states=hidden_states,
246
  attention_mask=attention_mask,
 
247
  past_key_value=past_key_value,
248
  output_attentions=output_attentions,
249
  use_cache=use_cache,
 
258
 
259
  outputs = (hidden_states,)
260
 
 
 
 
261
  if use_cache:
262
  outputs += (present_key_value,)
263
 
 
268
  config_class = BaichuanConfig
269
  base_model_prefix = "model"
270
  supports_gradient_checkpointing = True
271
+ _no_split_modules = ["BaichuanLayer"]
272
  _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
273
 
274
  def _init_weights(self, module):
275
  std = self.config.initializer_range
276
+ if isinstance(module, torch.nn.Linear):
277
  module.weight.data.normal_(mean=0.0, std=std)
278
  if module.bias is not None:
279
  module.bias.data.zero_()
280
+ elif isinstance(module, torch.nn.Embedding):
281
  module.weight.data.normal_(mean=0.0, std=std)
282
  if module.padding_idx is not None:
283
  module.weight.data[module.padding_idx].zero_()
 
292
  super().__init__(config)
293
  self.padding_idx = config.pad_token_id
294
  self.vocab_size = config.vocab_size
295
+ self.n_head = config.num_attention_heads
296
+ self.embed_tokens = torch.nn.Embedding(
297
+ config.vocab_size, config.hidden_size, self.padding_idx
298
+ )
299
+ self.layers = torch.nn.ModuleList(
300
+ [BaichuanLayer(config) for _ in range(config.num_hidden_layers)]
301
+ )
302
+ self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
303
 
304
+ self.gradient_checkpointing = config.gradient_checkpointing
 
 
 
 
 
305
  self.post_init()
306
+ self.max_cache_pos = config.model_max_length
307
+ self.first_run = True
308
+ self.alibi_mask = None
309
 
310
  def get_input_embeddings(self):
311
  return self.embed_tokens
 
313
  def set_input_embeddings(self, value):
314
  self.embed_tokens = value
315
 
316
+ def get_alibi_mask(self, tensor, seq_length_with_past):
317
+ if self.training:
318
+ slopes = torch.Tensor(_get_interleave(self.n_head))
319
+ position_point = (
320
+ torch.arange(seq_length_with_past) - seq_length_with_past + 1
 
 
 
 
 
 
321
  )
322
+ position_point = (
323
+ position_point.unsqueeze(0)
324
+ .unsqueeze(0)
325
+ .expand(self.n_head, seq_length_with_past, -1)
 
326
  )
327
+ diag = torch.diag(position_point[0])
328
+ position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(
329
+ -1, -2
330
  )
331
+ alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point
332
+ mask = _buffered_future_mask(
333
+ tensor, seq_length_with_past, alibi, self.n_head
334
+ )
335
+ else:
336
+ if self.first_run:
337
+ self.first_run = False
338
+ self.register_buffer(
339
+ "future_mask",
340
+ _gen_alibi_mask(tensor, self.n_head, self.max_cache_pos).to(
341
+ tensor
342
+ ),
343
+ persistent=False,
344
+ )
345
+ if seq_length_with_past > self.max_cache_pos:
346
+ self.max_cache_pos = seq_length_with_past
347
+ self.register_buffer(
348
+ "future_mask",
349
+ _gen_alibi_mask(tensor, self.n_head, self.max_cache_pos).to(
350
+ tensor
351
+ ),
352
+ persistent=False,
353
+ )
354
+ mask = self.future_mask[
355
+ : self.n_head, :seq_length_with_past, :seq_length_with_past
356
+ ]
357
+ return mask
358
 
359
  def forward(
360
+ self,
361
+ input_ids: torch.LongTensor = None,
362
+ attention_mask: Optional[torch.Tensor] = None,
363
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
364
+ inputs_embeds: Optional[torch.FloatTensor] = None,
365
+ use_cache: Optional[bool] = False,
366
+ output_attentions: Optional[bool] = False,
367
+ output_hidden_states: Optional[bool] = False,
368
+ return_dict: Optional[bool] = True,
 
369
  ) -> Union[Tuple, BaseModelOutputWithPast]:
 
 
 
 
 
 
 
 
 
370
  if input_ids is not None and inputs_embeds is not None:
371
+ raise ValueError(
372
+ "You cannot provide both input_ids and inputs_embeds simultaneously"
373
+ )
374
  elif input_ids is not None:
375
  batch_size, seq_length = input_ids.shape
376
  elif inputs_embeds is not None:
377
  batch_size, seq_length, _ = inputs_embeds.shape
378
  else:
379
+ raise ValueError("You need to provide input_ids or inputs_embeds")
380
+
381
+ return_dict = (
382
+ return_dict if return_dict is not None else self.config.use_return_dict
383
+ )
384
 
385
  seq_length_with_past = seq_length
 
386
 
387
  if past_key_values is not None:
388
  past_key_values_length = past_key_values[0][0].shape[2]
389
  seq_length_with_past = seq_length_with_past + past_key_values_length
390
 
 
 
 
 
 
 
 
 
 
391
  if inputs_embeds is None:
392
  inputs_embeds = self.embed_tokens(input_ids)
393
+
394
+ if self.training:
395
+ if (
396
+ self.alibi_mask is None
397
+ or self.alibi_mask.shape[-1] != seq_length_with_past
398
+ ):
399
+ self.alibi_mask = self.get_alibi_mask(
400
+ inputs_embeds, seq_length_with_past
401
+ )
402
+ alibi_mask = self.alibi_mask
403
+ else:
404
+ alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
405
+
406
+ if attention_mask is not None:
407
+ if len(attention_mask.shape) == 2:
408
+ expanded_mask = attention_mask.to(alibi_mask.dtype)
409
+ expanded_mask = torch.tril(
410
+ torch.gt(expanded_mask[:, :, None] * expanded_mask[:, None, :], 0)
411
+ ) * torch.eq(expanded_mask[:, :, None] - expanded_mask[:, None, :], 0)
412
+ else:
413
+ expanded_mask = attention_mask
414
+ bsz = inputs_embeds.size(0)
415
+ src_len, tgt_len = alibi_mask.size()[-2:]
416
+ expanded_mask = (
417
+ expanded_mask.unsqueeze(1)
418
+ .expand(bsz, 1, src_len, tgt_len)
419
+ .to(alibi_mask.dtype)
420
  )
421
+ inverted_mask = 1.0 - expanded_mask
422
+ inverted_mask = inverted_mask.masked_fill(
423
+ inverted_mask.to(torch.bool), torch.finfo(alibi_mask.dtype).min
424
+ )
425
+ attention_mask = inverted_mask + alibi_mask.unsqueeze(0)
426
+ else:
427
+ attention_mask = alibi_mask
428
 
429
  hidden_states = inputs_embeds
430
 
 
444
  if output_hidden_states:
445
  all_hidden_states += (hidden_states,)
446
 
447
+ past_key_value = (
448
+ past_key_values[idx] if past_key_values is not None else None
449
+ )
450
 
451
  if self.gradient_checkpointing and self.training:
452
 
 
461
  create_custom_forward(decoder_layer),
462
  hidden_states,
463
  attention_mask,
 
464
  None,
465
  )
466
  else:
467
  layer_outputs = decoder_layer(
468
  hidden_states,
469
  attention_mask=attention_mask,
 
470
  past_key_value=past_key_value,
471
  output_attentions=output_attentions,
472
  use_cache=use_cache,
 
488
 
489
  next_cache = next_decoder_cache if use_cache else None
490
  if not return_dict:
491
+ return tuple(
492
+ v
493
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
494
+ if v is not None
495
+ )
496
  return BaseModelOutputWithPast(
497
  last_hidden_state=hidden_states,
498
  past_key_values=next_cache,
 
514
  self.first_flag = True
515
  elif self.first_flag:
516
  self.first_flag = False
517
+ self.weight = nn.Parameter(nn.functional.normalize(self.weight))
518
  norm_weight = self.weight
519
  else:
520
  norm_weight = self.weight
 
532
  finally:
533
  _init_weights = old_init_weights
534
 
535
+
536
  class BaichuanForCausalLM(BaichuanPreTrainedModel):
537
  def __init__(self, config, *model_args, **model_kwargs):
538
  super().__init__(config, *model_args, **model_kwargs)
539
  self.model = BaichuanModel(config)
 
540
  self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
541
+ #if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
542
  if hasattr(config, "quantization_config") and isinstance(config.quantization_config, dict) and config.quantization_config.get('load_in_4bit', False):
543
  try:
544
  from .quantizer import quantize_offline, init_model_weight_int4
545
  except ImportError:
546
+ raise ImportError(f"Needs quantize_offline to run quantize.")
547
  quantize_offline(self, 4)
548
  # Initialize weights and apply final processing
549
  self.post_init()
 
581
  use_safetensors: bool = None,
582
  **kwargs,
583
  ):
584
+
585
  # Load config if we don't provide a configuration
586
  if not isinstance(config, PretrainedConfig):
587
  config_path = config if config is not None else pretrained_model_name_or_path
 
602
  )
603
  else:
604
  model_kwargs = kwargs
605
+
606
+ if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
607
+ try:
608
+ from .quantizer import init_model_weight_int4
609
+ from accelerate import init_empty_weights, dispatch_model, infer_auto_device_map
610
+ from accelerate.utils import CustomDtype
611
+ from accelerate.utils import get_balanced_memory
612
+ except ImportError:
613
+ raise ImportError(f"Needs import model weight init func to run quantize.")
614
+ # Instantiate model.
615
+ init_contexts = [no_init_weights(_enable=True)]
616
+ init_contexts.append(init_empty_weights())
617
+ with ContextManagers(init_contexts):
618
+ model = cls(config)
619
+
620
+ model_file = os.path.join(pretrained_model_name_or_path, 'pytorch_model.bin')
621
+ state_dict = torch.load(model_file, map_location="cpu")
622
+ model.is_quantized = True
623
+
624
+ device_map = kwargs.pop("device_map", None)
625
+ torch_dtype = kwargs.pop("torch_dtype", None)
626
+ if device_map is not None:
627
+ kwargs = {"no_split_module_classes": model._no_split_modules}
628
+ target_dtype = CustomDtype.INT4
629
+ max_memory = get_balanced_memory(
630
+ model,
631
+ dtype=target_dtype,
632
+ low_zero=(device_map == "balanced_low_0"),
633
+ max_memory=None,
634
+ **kwargs,
635
+ )
636
+ kwargs["max_memory"] = max_memory
637
+ device_map = infer_auto_device_map(model, dtype=target_dtype, **kwargs)
638
+ model = init_model_weight_int4(config, model, state_dict)
639
+
640
+ # Set model in evaluation mode to deactivate DropOut modules by default
641
+ model.eval()
642
+ # If it is a model with generation capabilities, attempt to load the generation config
643
+ if model.can_generate():
644
+ try:
645
+ model.generation_config = GenerationConfig.from_pretrained(
646
+ pretrained_model_name_or_path,
647
+ cache_dir=cache_dir,
648
+ force_download=force_download,
649
+ resume_download=False,
650
+ proxies=None,
651
+ local_files_only=local_files_only,
652
+ token=token,
653
+ revision=revision,
654
+ subfolder="",
655
+ _from_auto=False,
656
+ _from_pipeline=None,
657
+ **kwargs,
658
+ )
659
+ except (OSError, TypeError):
660
+ logger.info(
661
+ "Generation config file not found, using a generation config created from the model config."
662
+ )
663
+ pass
664
+
665
+ if device_map is not None:
666
+ dispatch_model(model, device_map=device_map)
667
+
668
+ return model
669
+
670
  return super(BaichuanForCausalLM, cls).from_pretrained(pretrained_model_name_or_path, *model_args,
671
  config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes,
672
  force_download=force_download, local_files_only=local_files_only, token=token, revision=revision,
673
+ use_safetensors=use_safetensors, **kwargs)
674
 
675
  def forward(
676
+ self,
677
+ input_ids: torch.LongTensor = None,
678
+ attention_mask: Optional[torch.Tensor] = None,
679
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
680
+ inputs_embeds: Optional[torch.FloatTensor] = None,
681
+ labels: Optional[torch.LongTensor] = None,
682
+ use_cache: Optional[bool] = None,
683
+ output_attentions: Optional[bool] = False,
684
+ output_hidden_states: Optional[bool] = False,
685
+ return_dict: Optional[bool] = True,
686
+ **kwargs,
687
  ) -> Union[Tuple, CausalLMOutputWithPast]:
688
+ return_dict = (
689
+ return_dict if return_dict is not None else self.config.use_return_dict
 
 
690
  )
 
691
 
692
  # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
693
  outputs = self.model(
694
  input_ids=input_ids,
695
  attention_mask=attention_mask,
 
696
  past_key_values=past_key_values,
697
  inputs_embeds=inputs_embeds,
698
  use_cache=use_cache,
 
730
  attentions=outputs.attentions,
731
  )
732
 
733
+ def quantize(self, bits: int):
734
+ try:
735
+ from .quantizer import quantize_online
736
+ except ImportError:
737
+ raise ImportError(f"Needs QLinear to run quantize.")
738
+ return quantize_online(self, bits)
739
+
740
  def prepare_inputs_for_generation(
741
+ self,
742
+ input_ids: torch.LongTensor,
743
+ past_key_values: Optional[torch.Tensor] = None,
744
+ attention_mask: Optional[torch.Tensor] = None,
745
+ inputs_embeds: Optional[torch.Tensor] = None,
746
+ **kwargs,
747
  ):
748
  if past_key_values:
749
  input_ids = input_ids[:, -1:]
750
 
 
 
 
 
 
 
 
 
751
  # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
752
  if inputs_embeds is not None and past_key_values is None:
753
  model_inputs = {"inputs_embeds": inputs_embeds}
 
756
 
757
  model_inputs.update(
758
  {
 
759
  "past_key_values": past_key_values,
760
  "use_cache": kwargs.get("use_cache"),
761
  "attention_mask": attention_mask,
 
765
 
766
  @staticmethod
767
  def _reorder_cache(past_key_values, beam_idx):
768
+ return tuple(
769
+ tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
770
+ for layer_past in past_key_values
771
+ )
772
 
773
+ def _build_chat_input(
774
+ self, tokenizer, messages: List[dict], max_new_tokens: int = 0
775
+ ):
776
+ max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens
777
+ max_input_tokens = self.config.model_max_length - max_new_tokens
778
+ max_input_tokens = max(self.config.model_max_length // 2, max_input_tokens)
779
+ total_input, round_input = [], []
780
+ for i, message in enumerate(messages[::-1]):
781
+ content_tokens = tokenizer.encode(message["content"])
782
+ if message["role"] == "user":
783
+ round_input = (
784
+ [self.generation_config.user_token_id]
785
+ + content_tokens
786
+ + round_input
787
+ )
788
+ if (
789
+ total_input
790
+ and len(total_input) + len(round_input) > max_input_tokens
791
+ ):
792
+ break
793
+ else:
794
+ total_input = round_input + total_input
795
+ if len(total_input) >= max_input_tokens:
796
+ break
797
+ else:
798
+ round_input = []
799
+ elif message["role"] == "assistant":
800
+ round_input = (
801
+ [self.generation_config.assistant_token_id]
802
+ + content_tokens
803
+ + [self.generation_config.eos_token_id]
804
+ + round_input
805
+ )
806
+ else:
807
+ raise ValueError(f"message role not supported yet: {message['role']}")
808
+ total_input = total_input[-max_input_tokens:] # truncate left
809
+ total_input.append(self.generation_config.assistant_token_id)
810
+ total_input = torch.LongTensor([total_input]).to(self.device)
811
+ return total_input
812
 
813
  def chat(self, tokenizer, messages: List[dict], stream=False,
814
  generation_config: Optional[GenerationConfig]=None):
815
  generation_config = generation_config or self.generation_config
816
  input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
817
+ if stream:
818
+ streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
819
+ Thread(target=self.generate, kwargs=dict(
820
+ inputs=input_ids, streamer=streamer,
821
+ generation_config=generation_config,
822
+ )).start()
823
+ return streamer
824
+ else:
825
+ outputs = self.generate(input_ids, generation_config=generation_config)
826
+ response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
827
+ return response
828
+
829
+ def HuatuoChat(self, tokenizer, messages: List[dict], stream=False,
830
+ generation_config: Optional[GenerationConfig]=None):
831
+ generation_config = generation_config or self.generation_config
832
+ input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
833
  if stream:
834
  streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
835
  Thread(target=self.generate, kwargs=dict(