File size: 2,230 Bytes
0746f2a eac705b 0746f2a a8e2fa6 0746f2a a2e3489 0746f2a a2e3489 0746f2a a2e3489 d8daca5 a2e3489 d8daca5 a2e3489 d8daca5 a2e3489 0746f2a a2e3489 0746f2a a2e3489 56c6eda a2e3489 6ac6cb0 a2e3489 0746f2a a2e3489 0746f2a a2e3489 0746f2a a2e3489 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
license: mit
library_name: transformers
pipeline_tag: image-text-to-text
---
![header](./assets/header.png)
<p align="center">
📃 <a href="https://arxiv.org/abs/2409.02889" target="_blank">Paper</a> • 🌐 <a href="" target="_blank">Demo</a> • 📃 <a href="https://github.com/FreedomIntelligence/LongLLaVA" target="_blank">Github</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/LongLLaVA-9B" target="_blank">LongLLaVA-9B</a>
</p>
![efficiency](./assets/singleGPU.png)
## 🌈 Update
* **[2024.09.05]** LongLLaVA repo is published!🎉 The Code will
## Architecture
<details>
<summary>Click to view the architecture image</summary>
![Architecture Image](./assets/arch.png)
</details>
## Results
<details>
<summary>Click to view the Results</summary>
- Main Results
![Main Results](./assets/result1.png)
- Diagnostic Results
![Diagnostic Results](./assets/diaresult.png)
- Video-NIAH
![Video-NIAH](./assets/NIAH.png)
</details>
## Results reproduction
### Evaluation
- Preparation
Get the model inference code from [Github](https://github.com/FreedomIntelligence/LongLLaVA).
```bash
git clone https://github.com/FreedomIntelligence/LongLLaVA.git
```
- Environment Setup
```bash
pip install -r requirements.txt
```
- Command Line Interface
```bash
python cli.py --model_dir path-to-longllava
```
- Model Inference
```python
query = 'What does the picture show?'
image_paths = ['image_path1'] # image or video path
from cli import Chatbot
bot = Chatbot(path-to-longllava)
output = bot.chat(query, image_paths)
print(output) # Prints the output of the model
```
## Acknowledgement
- [LLaVA](https://github.com/haotian-liu/LLaVA): Visual Instruction Tuning (LLaVA) built towards GPT-4V level capabilities and beyond.
## Citation
```
@misc{wang2024longllavascalingmultimodalllms,
title={LongLLaVA: Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture},
author={Xidong Wang and Dingjie Song and Shunian Chen and Chen Zhang and Benyou Wang},
year={2024},
eprint={2409.02889},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2409.02889},
}
```
|