|
from collections import namedtuple |
|
from copy import copy |
|
from itertools import permutations, chain |
|
import random |
|
import csv |
|
from io import StringIO |
|
from PIL import Image |
|
import numpy as np |
|
import os |
|
|
|
import modules.scripts as scripts |
|
import gradio as gr |
|
from modules import images, sd_samplers |
|
from modules.paths import models_path |
|
from modules.hypernetworks import hypernetwork |
|
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img |
|
from modules.shared import opts, cmd_opts, state |
|
import modules.shared as shared |
|
import modules.sd_samplers |
|
import modules.sd_models |
|
import re |
|
|
|
|
|
def apply_field(field): |
|
def fun(p, x, xs): |
|
setattr(p, field, x) |
|
|
|
return fun |
|
|
|
|
|
def apply_prompt(p, x, xs): |
|
if xs[0] not in p.prompt and xs[0] not in p.negative_prompt: |
|
raise RuntimeError(f"Prompt S/R did not find {xs[0]} in prompt or negative prompt.") |
|
|
|
p.prompt = p.prompt.replace(xs[0], x) |
|
p.negative_prompt = p.negative_prompt.replace(xs[0], x) |
|
|
|
def edit_prompt(p,x,z): |
|
p.prompt = z + " " + x |
|
|
|
|
|
def apply_order(p, x, xs): |
|
token_order = [] |
|
|
|
|
|
for token in x: |
|
token_order.append((p.prompt.find(token), token)) |
|
|
|
token_order.sort(key=lambda t: t[0]) |
|
|
|
prompt_parts = [] |
|
|
|
|
|
for _, token in token_order: |
|
n = p.prompt.find(token) |
|
prompt_parts.append(p.prompt[0:n]) |
|
p.prompt = p.prompt[n + len(token):] |
|
|
|
|
|
prompt_tmp = "" |
|
for idx, part in enumerate(prompt_parts): |
|
prompt_tmp += part |
|
prompt_tmp += x[idx] |
|
p.prompt = prompt_tmp + p.prompt |
|
|
|
|
|
def build_samplers_dict(): |
|
samplers_dict = {} |
|
for i, sampler in enumerate(sd_samplers.all_samplers): |
|
samplers_dict[sampler.name.lower()] = i |
|
for alias in sampler.aliases: |
|
samplers_dict[alias.lower()] = i |
|
return samplers_dict |
|
|
|
|
|
def apply_sampler(p, x, xs): |
|
sampler_index = build_samplers_dict().get(x.lower(), None) |
|
if sampler_index is None: |
|
raise RuntimeError(f"Unknown sampler: {x}") |
|
|
|
p.sampler_index = sampler_index |
|
|
|
|
|
def confirm_samplers(p, xs): |
|
samplers_dict = build_samplers_dict() |
|
for x in xs: |
|
if x.lower() not in samplers_dict.keys(): |
|
raise RuntimeError(f"Unknown sampler: {x}") |
|
|
|
|
|
def apply_checkpoint(p, x, xs): |
|
info = modules.sd_models.get_closet_checkpoint_match(x) |
|
if info is None: |
|
raise RuntimeError(f"Unknown checkpoint: {x}") |
|
modules.sd_models.reload_model_weights(shared.sd_model, info) |
|
p.sd_model = shared.sd_model |
|
|
|
|
|
def confirm_checkpoints(p, xs): |
|
for x in xs: |
|
if modules.sd_models.get_closet_checkpoint_match(x) is None: |
|
raise RuntimeError(f"Unknown checkpoint: {x}") |
|
|
|
|
|
def apply_hypernetwork(p, x, xs): |
|
if x.lower() in ["", "none"]: |
|
name = None |
|
else: |
|
name = hypernetwork.find_closest_hypernetwork_name(x) |
|
if not name: |
|
raise RuntimeError(f"Unknown hypernetwork: {x}") |
|
hypernetwork.load_hypernetwork(name) |
|
|
|
|
|
def apply_hypernetwork_strength(p, x, xs): |
|
hypernetwork.apply_strength(x) |
|
|
|
|
|
def confirm_hypernetworks(p, xs): |
|
for x in xs: |
|
if x.lower() in ["", "none"]: |
|
continue |
|
if not hypernetwork.find_closest_hypernetwork_name(x): |
|
raise RuntimeError(f"Unknown hypernetwork: {x}") |
|
|
|
|
|
def apply_clip_skip(p, x, xs): |
|
opts.data["CLIP_stop_at_last_layers"] = x |
|
|
|
|
|
def format_value_add_label(p, opt, x): |
|
if type(x) == float: |
|
x = round(x, 8) |
|
|
|
return f"{opt.label}: {x}" |
|
|
|
|
|
def format_value(p, opt, x): |
|
if type(x) == float: |
|
x = round(x, 8) |
|
return x |
|
|
|
|
|
def format_value_join_list(p, opt, x): |
|
return ", ".join(x) |
|
|
|
|
|
def do_nothing(p, x, xs): |
|
pass |
|
|
|
|
|
def format_nothing(p, opt, x): |
|
return "" |
|
|
|
|
|
def str_permutations(x): |
|
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations""" |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
def draw_xy_grid(p, xs, ys, zs, x_labels, y_labels, cell, draw_legend, include_lone_images): |
|
ver_texts = [[images.GridAnnotation(y)] for y in y_labels] |
|
hor_texts = [[images.GridAnnotation(x)] for x in x_labels] |
|
|
|
|
|
|
|
image_cache = [] |
|
|
|
processed_result = None |
|
cell_mode = "P" |
|
cell_size = (1,1) |
|
|
|
state.job_count = len(xs) * len(ys) * p.n_iter |
|
|
|
for iy, y in enumerate(ys): |
|
for ix, x in enumerate(xs): |
|
state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}" |
|
z = zs[iy] |
|
processed:Processed = cell(x, y, z) |
|
try: |
|
|
|
|
|
processed_image = processed.images[0] |
|
|
|
if processed_result is None: |
|
|
|
processed_result = copy(processed) |
|
cell_mode = processed_image.mode |
|
cell_size = processed_image.size |
|
processed_result.images = [Image.new(cell_mode, cell_size)] |
|
|
|
image_cache.append(processed_image) |
|
if include_lone_images: |
|
processed_result.images.append(processed_image) |
|
processed_result.all_prompts.append(processed.prompt) |
|
processed_result.all_seeds.append(processed.seed) |
|
processed_result.infotexts.append(processed.infotexts[0]) |
|
except: |
|
image_cache.append(Image.new(cell_mode, cell_size)) |
|
|
|
if not processed_result: |
|
print("Unexpected error: draw_xy_grid failed to return even a single processed image") |
|
return Processed() |
|
|
|
grid = images.image_grid(image_cache, rows=len(ys)) |
|
if draw_legend: |
|
grid = images.draw_grid_annotations(grid, cell_size[0], cell_size[1], hor_texts, ver_texts) |
|
|
|
processed_result.images[0] = grid |
|
|
|
return processed_result |
|
|
|
|
|
class SharedSettingsStackHelper(object): |
|
def __enter__(self): |
|
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers |
|
self.hypernetwork = opts.sd_hypernetwork |
|
self.model = shared.sd_model |
|
|
|
def __exit__(self, exc_type, exc_value, tb): |
|
modules.sd_models.reload_model_weights(self.model) |
|
|
|
hypernetwork.load_hypernetwork(self.hypernetwork) |
|
hypernetwork.apply_strength() |
|
|
|
opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers |
|
|
|
|
|
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*") |
|
re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*") |
|
|
|
re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*") |
|
re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*") |
|
|
|
class Script(scripts.Script): |
|
def title(self): |
|
return "Generate Model Grid" |
|
|
|
def ui(self, is_img2img): |
|
filenames = [] |
|
z_valuez = '' |
|
for path in os.listdir(os.path.join(models_path, 'Stable-diffusion')): |
|
if path.endswith('.ckpt'): |
|
filenames.append(path) |
|
filenames.append('model.ckpt') |
|
|
|
with gr.Row(): |
|
x_values = gr.Textbox(label="Prompts, separated with &", lines=1) |
|
|
|
with gr.Row(): |
|
y_values = gr.CheckboxGroup(filenames, label="Checkpoint file names, including file ending", lines=1) |
|
|
|
with gr.Row(): |
|
z_values = gr.Textbox(label="Model tokens", lines=1) |
|
|
|
draw_legend = gr.Checkbox(label='Draw legend', value=True) |
|
include_lone_images = gr.Checkbox(label='Include Separate Images', value=False) |
|
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False) |
|
|
|
return [x_values, y_values, z_values, draw_legend, include_lone_images, no_fixed_seeds] |
|
|
|
def run(self, p, x_values, y_values, z_values, draw_legend, include_lone_images, no_fixed_seeds): |
|
y_values = ','.join(y_values) |
|
if not no_fixed_seeds: |
|
modules.processing.fix_seed(p) |
|
|
|
if not opts.return_grid: |
|
p.batch_size = 1 |
|
|
|
xs = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(x_values), delimiter='&'))] |
|
ys = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(y_values)))] |
|
zs = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(z_values)))] |
|
|
|
def cell(x, y, z): |
|
pc = copy(p) |
|
edit_prompt(pc, x, z) |
|
confirm_checkpoints(pc,ys) |
|
apply_checkpoint(pc, y, ys) |
|
|
|
return process_images(pc) |
|
|
|
with SharedSettingsStackHelper(): |
|
processed = draw_xy_grid( |
|
p, |
|
xs=xs, |
|
ys=ys, |
|
zs=zs, |
|
x_labels=xs, |
|
y_labels=ys, |
|
cell=cell, |
|
draw_legend=draw_legend, |
|
include_lone_images=include_lone_images |
|
) |
|
|
|
if opts.grid_save: |
|
images.save_image(processed.images[0], p.outpath_grids, "xy_grid", prompt=p.prompt, seed=processed.seed, grid=True, p=p) |
|
|
|
return processed |