Delete generate_model_grid_backup.py
Browse files- generate_model_grid_backup.py +0 -294
generate_model_grid_backup.py
DELETED
@@ -1,294 +0,0 @@
|
|
1 |
-
from collections import namedtuple
|
2 |
-
from copy import copy
|
3 |
-
from itertools import permutations, chain
|
4 |
-
import random
|
5 |
-
import csv
|
6 |
-
from io import StringIO
|
7 |
-
from PIL import Image
|
8 |
-
import numpy as np
|
9 |
-
|
10 |
-
import modules.scripts as scripts
|
11 |
-
import gradio as gr
|
12 |
-
|
13 |
-
from modules import images, sd_samplers
|
14 |
-
from modules.hypernetworks import hypernetwork
|
15 |
-
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
|
16 |
-
from modules.shared import opts, cmd_opts, state
|
17 |
-
import modules.shared as shared
|
18 |
-
import modules.sd_samplers
|
19 |
-
import modules.sd_models
|
20 |
-
import re
|
21 |
-
|
22 |
-
|
23 |
-
def apply_field(field):
|
24 |
-
def fun(p, x, xs):
|
25 |
-
setattr(p, field, x)
|
26 |
-
|
27 |
-
return fun
|
28 |
-
|
29 |
-
|
30 |
-
def apply_prompt(p, x, xs):
|
31 |
-
if xs[0] not in p.prompt and xs[0] not in p.negative_prompt:
|
32 |
-
raise RuntimeError(f"Prompt S/R did not find {xs[0]} in prompt or negative prompt.")
|
33 |
-
|
34 |
-
p.prompt = p.prompt.replace(xs[0], x)
|
35 |
-
p.negative_prompt = p.negative_prompt.replace(xs[0], x)
|
36 |
-
|
37 |
-
def edit_prompt(p,x,z):
|
38 |
-
p.prompt = z + " " + x
|
39 |
-
|
40 |
-
|
41 |
-
def apply_order(p, x, xs):
|
42 |
-
token_order = []
|
43 |
-
|
44 |
-
# Initally grab the tokens from the prompt, so they can be replaced in order of earliest seen
|
45 |
-
for token in x:
|
46 |
-
token_order.append((p.prompt.find(token), token))
|
47 |
-
|
48 |
-
token_order.sort(key=lambda t: t[0])
|
49 |
-
|
50 |
-
prompt_parts = []
|
51 |
-
|
52 |
-
# Split the prompt up, taking out the tokens
|
53 |
-
for _, token in token_order:
|
54 |
-
n = p.prompt.find(token)
|
55 |
-
prompt_parts.append(p.prompt[0:n])
|
56 |
-
p.prompt = p.prompt[n + len(token):]
|
57 |
-
|
58 |
-
# Rebuild the prompt with the tokens in the order we want
|
59 |
-
prompt_tmp = ""
|
60 |
-
for idx, part in enumerate(prompt_parts):
|
61 |
-
prompt_tmp += part
|
62 |
-
prompt_tmp += x[idx]
|
63 |
-
p.prompt = prompt_tmp + p.prompt
|
64 |
-
|
65 |
-
|
66 |
-
def build_samplers_dict():
|
67 |
-
samplers_dict = {}
|
68 |
-
for i, sampler in enumerate(sd_samplers.all_samplers):
|
69 |
-
samplers_dict[sampler.name.lower()] = i
|
70 |
-
for alias in sampler.aliases:
|
71 |
-
samplers_dict[alias.lower()] = i
|
72 |
-
return samplers_dict
|
73 |
-
|
74 |
-
|
75 |
-
def apply_sampler(p, x, xs):
|
76 |
-
sampler_index = build_samplers_dict().get(x.lower(), None)
|
77 |
-
if sampler_index is None:
|
78 |
-
raise RuntimeError(f"Unknown sampler: {x}")
|
79 |
-
|
80 |
-
p.sampler_index = sampler_index
|
81 |
-
|
82 |
-
|
83 |
-
def confirm_samplers(p, xs):
|
84 |
-
samplers_dict = build_samplers_dict()
|
85 |
-
for x in xs:
|
86 |
-
if x.lower() not in samplers_dict.keys():
|
87 |
-
raise RuntimeError(f"Unknown sampler: {x}")
|
88 |
-
|
89 |
-
|
90 |
-
def apply_checkpoint(p, x, xs):
|
91 |
-
info = modules.sd_models.get_closet_checkpoint_match(x)
|
92 |
-
if info is None:
|
93 |
-
raise RuntimeError(f"Unknown checkpoint: {x}")
|
94 |
-
modules.sd_models.reload_model_weights(shared.sd_model, info)
|
95 |
-
p.sd_model = shared.sd_model
|
96 |
-
|
97 |
-
|
98 |
-
def confirm_checkpoints(p, xs):
|
99 |
-
for x in xs:
|
100 |
-
if modules.sd_models.get_closet_checkpoint_match(x) is None:
|
101 |
-
raise RuntimeError(f"Unknown checkpoint: {x}")
|
102 |
-
|
103 |
-
|
104 |
-
def apply_hypernetwork(p, x, xs):
|
105 |
-
if x.lower() in ["", "none"]:
|
106 |
-
name = None
|
107 |
-
else:
|
108 |
-
name = hypernetwork.find_closest_hypernetwork_name(x)
|
109 |
-
if not name:
|
110 |
-
raise RuntimeError(f"Unknown hypernetwork: {x}")
|
111 |
-
hypernetwork.load_hypernetwork(name)
|
112 |
-
|
113 |
-
|
114 |
-
def apply_hypernetwork_strength(p, x, xs):
|
115 |
-
hypernetwork.apply_strength(x)
|
116 |
-
|
117 |
-
|
118 |
-
def confirm_hypernetworks(p, xs):
|
119 |
-
for x in xs:
|
120 |
-
if x.lower() in ["", "none"]:
|
121 |
-
continue
|
122 |
-
if not hypernetwork.find_closest_hypernetwork_name(x):
|
123 |
-
raise RuntimeError(f"Unknown hypernetwork: {x}")
|
124 |
-
|
125 |
-
|
126 |
-
def apply_clip_skip(p, x, xs):
|
127 |
-
opts.data["CLIP_stop_at_last_layers"] = x
|
128 |
-
|
129 |
-
|
130 |
-
def format_value_add_label(p, opt, x):
|
131 |
-
if type(x) == float:
|
132 |
-
x = round(x, 8)
|
133 |
-
|
134 |
-
return f"{opt.label}: {x}"
|
135 |
-
|
136 |
-
|
137 |
-
def format_value(p, opt, x):
|
138 |
-
if type(x) == float:
|
139 |
-
x = round(x, 8)
|
140 |
-
return x
|
141 |
-
|
142 |
-
|
143 |
-
def format_value_join_list(p, opt, x):
|
144 |
-
return ", ".join(x)
|
145 |
-
|
146 |
-
|
147 |
-
def do_nothing(p, x, xs):
|
148 |
-
pass
|
149 |
-
|
150 |
-
|
151 |
-
def format_nothing(p, opt, x):
|
152 |
-
return ""
|
153 |
-
|
154 |
-
|
155 |
-
def str_permutations(x):
|
156 |
-
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations"""
|
157 |
-
return x
|
158 |
-
|
159 |
-
# AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value", "confirm"])
|
160 |
-
# AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value", "confirm"])
|
161 |
-
|
162 |
-
|
163 |
-
def draw_xy_grid(p, xs, ys, zs, x_labels, y_labels, cell, draw_legend, include_lone_images):
|
164 |
-
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
|
165 |
-
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
|
166 |
-
|
167 |
-
# Temporary list of all the images that are generated to be populated into the grid.
|
168 |
-
# Will be filled with empty images for any individual step that fails to process properly
|
169 |
-
image_cache = []
|
170 |
-
|
171 |
-
processed_result = None
|
172 |
-
cell_mode = "P"
|
173 |
-
cell_size = (1,1)
|
174 |
-
|
175 |
-
state.job_count = len(xs) * len(ys) * p.n_iter
|
176 |
-
|
177 |
-
for iy, y in enumerate(ys):
|
178 |
-
for ix, x in enumerate(xs):
|
179 |
-
state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}"
|
180 |
-
z = zs[iy]
|
181 |
-
processed:Processed = cell(x, y, z)
|
182 |
-
try:
|
183 |
-
# this dereference will throw an exception if the image was not processed
|
184 |
-
# (this happens in cases such as if the user stops the process from the UI)
|
185 |
-
processed_image = processed.images[0]
|
186 |
-
|
187 |
-
if processed_result is None:
|
188 |
-
# Use our first valid processed result as a template container to hold our full results
|
189 |
-
processed_result = copy(processed)
|
190 |
-
cell_mode = processed_image.mode
|
191 |
-
cell_size = processed_image.size
|
192 |
-
processed_result.images = [Image.new(cell_mode, cell_size)]
|
193 |
-
|
194 |
-
image_cache.append(processed_image)
|
195 |
-
if include_lone_images:
|
196 |
-
processed_result.images.append(processed_image)
|
197 |
-
processed_result.all_prompts.append(processed.prompt)
|
198 |
-
processed_result.all_seeds.append(processed.seed)
|
199 |
-
processed_result.infotexts.append(processed.infotexts[0])
|
200 |
-
except:
|
201 |
-
image_cache.append(Image.new(cell_mode, cell_size))
|
202 |
-
|
203 |
-
if not processed_result:
|
204 |
-
print("Unexpected error: draw_xy_grid failed to return even a single processed image")
|
205 |
-
return Processed()
|
206 |
-
|
207 |
-
grid = images.image_grid(image_cache, rows=len(ys))
|
208 |
-
if draw_legend:
|
209 |
-
grid = images.draw_grid_annotations(grid, cell_size[0], cell_size[1], hor_texts, ver_texts)
|
210 |
-
|
211 |
-
processed_result.images[0] = grid
|
212 |
-
|
213 |
-
return processed_result
|
214 |
-
|
215 |
-
|
216 |
-
class SharedSettingsStackHelper(object):
|
217 |
-
def __enter__(self):
|
218 |
-
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
|
219 |
-
self.hypernetwork = opts.sd_hypernetwork
|
220 |
-
self.model = shared.sd_model
|
221 |
-
|
222 |
-
def __exit__(self, exc_type, exc_value, tb):
|
223 |
-
modules.sd_models.reload_model_weights(self.model)
|
224 |
-
|
225 |
-
hypernetwork.load_hypernetwork(self.hypernetwork)
|
226 |
-
hypernetwork.apply_strength()
|
227 |
-
|
228 |
-
opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers
|
229 |
-
|
230 |
-
|
231 |
-
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
|
232 |
-
re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*")
|
233 |
-
|
234 |
-
re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*")
|
235 |
-
re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*")
|
236 |
-
|
237 |
-
class Script(scripts.Script):
|
238 |
-
def title(self):
|
239 |
-
return "Generate Model Grid"
|
240 |
-
|
241 |
-
def ui(self, is_img2img):
|
242 |
-
|
243 |
-
with gr.Row():
|
244 |
-
x_values = gr.Textbox(label="Prompts, separated with &", lines=1)
|
245 |
-
|
246 |
-
with gr.Row():
|
247 |
-
y_values = gr.Textbox(label="Checkpoint file names, including file ending", lines=1)
|
248 |
-
|
249 |
-
|
250 |
-
with gr.Row():
|
251 |
-
z_values = gr.Textbox(label="Model tokens", lines=1)
|
252 |
-
|
253 |
-
draw_legend = gr.Checkbox(label='Draw legend', value=True)
|
254 |
-
include_lone_images = gr.Checkbox(label='Include Separate Images', value=False)
|
255 |
-
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False)
|
256 |
-
|
257 |
-
return [x_values, y_values, z_values, draw_legend, include_lone_images, no_fixed_seeds]
|
258 |
-
|
259 |
-
def run(self, p, x_values, y_values, z_values, draw_legend, include_lone_images, no_fixed_seeds):
|
260 |
-
if not no_fixed_seeds:
|
261 |
-
modules.processing.fix_seed(p)
|
262 |
-
|
263 |
-
if not opts.return_grid:
|
264 |
-
p.batch_size = 1
|
265 |
-
|
266 |
-
xs = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(x_values), delimiter='&'))]
|
267 |
-
ys = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(y_values)))]
|
268 |
-
zs = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(z_values)))]
|
269 |
-
|
270 |
-
def cell(x, y, z):
|
271 |
-
pc = copy(p)
|
272 |
-
edit_prompt(pc, x, z)
|
273 |
-
confirm_checkpoints(pc,ys)
|
274 |
-
apply_checkpoint(pc, y, ys)
|
275 |
-
|
276 |
-
return process_images(pc)
|
277 |
-
|
278 |
-
with SharedSettingsStackHelper():
|
279 |
-
processed = draw_xy_grid(
|
280 |
-
p,
|
281 |
-
xs=xs,
|
282 |
-
ys=ys,
|
283 |
-
zs=zs,
|
284 |
-
x_labels=xs,
|
285 |
-
y_labels=ys,
|
286 |
-
cell=cell,
|
287 |
-
draw_legend=draw_legend,
|
288 |
-
include_lone_images=include_lone_images
|
289 |
-
)
|
290 |
-
|
291 |
-
if opts.grid_save:
|
292 |
-
images.save_image(processed.images[0], p.outpath_grids, "xy_grid", prompt=p.prompt, seed=processed.seed, grid=True, p=p)
|
293 |
-
|
294 |
-
return processed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|