Funnyworld1412 commited on
Commit
697a13f
1 Parent(s): 3113f6d

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ base_model: firqaaa/indo-setfit-absa-bert-base-restaurants-aspect
10
+ metrics:
11
+ - accuracy
12
+ widget:
13
+ - text: basi:jujur game bagus n refresing banget klo pas masuk region sampe archon
14
+ quest kelar disayangkan basi utk kontennya diulang ulang ampe gila bener bener
15
+ membosankan login n menghabiskan resin temen ku udh gak main bosen emng marketing
16
+ game player biar ngerasain serunya game diawal tambahin konten end game gk kasih
17
+ resin tambahan biar yg dikerjain
18
+ - text: karakter:game kikir pelit medit sumpah gacha ngak dapet tahan top up game
19
+ kemarin ngak kasih 1 karakter ngebahagiain player jgn download kalo mental aman
20
+ - text: loading:nya loading screen element sampe 4 kali game sih ajg niat bikin game
21
+ ga
22
+ - text: b5 kasih b5 playstore:hadiahnya plis karakter gratis b5 kasih b5 playstore
23
+ - text: gb:update 10 gb udah 30 ditambah 10gb males
24
+ pipeline_tag: text-classification
25
+ inference: false
26
+ ---
27
+
28
+ # SetFit Aspect Model with firqaaa/indo-setfit-absa-bert-base-restaurants-aspect
29
+
30
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [firqaaa/indo-setfit-absa-bert-base-restaurants-aspect](https://huggingface.co/firqaaa/indo-setfit-absa-bert-base-restaurants-aspect) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
31
+
32
+ The model has been trained using an efficient few-shot learning technique that involves:
33
+
34
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
35
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
36
+
37
+ This model was trained within the context of a larger system for ABSA, which looks like so:
38
+
39
+ 1. Use a spaCy model to select possible aspect span candidates.
40
+ 2. **Use this SetFit model to filter these possible aspect span candidates.**
41
+ 3. Use a SetFit model to classify the filtered aspect span candidates.
42
+
43
+ ## Model Details
44
+
45
+ ### Model Description
46
+ - **Model Type:** SetFit
47
+ - **Sentence Transformer body:** [firqaaa/indo-setfit-absa-bert-base-restaurants-aspect](https://huggingface.co/firqaaa/indo-setfit-absa-bert-base-restaurants-aspect)
48
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
49
+ - **spaCy Model:** id_core_news_trf
50
+ - **SetFitABSA Aspect Model:** [Funnyworld1412/ABSA_review_game_genshin_impact-aspect](https://huggingface.co/Funnyworld1412/ABSA_review_game_genshin_impact-aspect)
51
+ - **SetFitABSA Polarity Model:** [Funnyworld1412/ABSA_review_game_genshin_impact-polarity](https://huggingface.co/Funnyworld1412/ABSA_review_game_genshin_impact-polarity)
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Number of Classes:** 2 classes
54
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
61
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
62
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
63
+
64
+ ### Model Labels
65
+ | Label | Examples |
66
+ |:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
67
+ | aspect | <ul><li>'story:saranku developer menciptakan story menarik kehilangan player player yg bertahan repetitif monoton update size gede doang yg isinya chest itupun sampah puzzle yg rumit chest nya sampah story kebanyakan npc teyvat story utama mc dilupain gak difokusin map kalo udah kosong ya nyampah bikin size gede doang main 3 monoton perkembangan buruk'</li><li>'reward:tolong ditambah reward gachanya player kesulitan primo quest eksplorasi 100 dasar developer kapitalis game monoton ramah player kekurangan bahan gacha karakter'</li><li>'event:cuman saran pelit biar player gak kabur game sebelah hadiah event quest perbaiki udah nunggu event hadiah cuman gitu gitu aja sampek event selesai primogemnya 10 pull gacha gak tingakat kesulitan beda hadiah main kabur kalok pelit 1 jariang mohon perbaiki server indonya trimaksih'</li></ul> |
68
+ | no aspect | <ul><li>'saranku developer:saranku developer menciptakan story menarik kehilangan player player yg bertahan repetitif monoton update size gede doang yg isinya chest itupun sampah puzzle yg rumit chest nya sampah story kebanyakan npc teyvat story utama mc dilupain gak difokusin map kalo udah kosong ya nyampah bikin size gede doang main 3 monoton perkembangan buruk'</li><li>'story:saranku developer menciptakan story menarik kehilangan player player yg bertahan repetitif monoton update size gede doang yg isinya chest itupun sampah puzzle yg rumit chest nya sampah story kebanyakan npc teyvat story utama mc dilupain gak difokusin map kalo udah kosong ya nyampah bikin size gede doang main 3 monoton perkembangan buruk'</li><li>'kehilangan player player:saranku developer menciptakan story menarik kehilangan player player yg bertahan repetitif monoton update size gede doang yg isinya chest itupun sampah puzzle yg rumit chest nya sampah story kebanyakan npc teyvat story utama mc dilupain gak difokusin map kalo udah kosong ya nyampah bikin size gede doang main 3 monoton perkembangan buruk'</li></ul> |
69
+
70
+ ## Uses
71
+
72
+ ### Direct Use for Inference
73
+
74
+ First install the SetFit library:
75
+
76
+ ```bash
77
+ pip install setfit
78
+ ```
79
+
80
+ Then you can load this model and run inference.
81
+
82
+ ```python
83
+ from setfit import AbsaModel
84
+
85
+ # Download from the 🤗 Hub
86
+ model = AbsaModel.from_pretrained(
87
+ "Funnyworld1412/ABSA_review_game_genshin_impact-aspect",
88
+ "Funnyworld1412/ABSA_review_game_genshin_impact-polarity",
89
+ )
90
+ # Run inference
91
+ preds = model("The food was great, but the venue is just way too busy.")
92
+ ```
93
+
94
+ <!--
95
+ ### Downstream Use
96
+
97
+ *List how someone could finetune this model on their own dataset.*
98
+ -->
99
+
100
+ <!--
101
+ ### Out-of-Scope Use
102
+
103
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
104
+ -->
105
+
106
+ <!--
107
+ ## Bias, Risks and Limitations
108
+
109
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
110
+ -->
111
+
112
+ <!--
113
+ ### Recommendations
114
+
115
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
116
+ -->
117
+
118
+ ## Training Details
119
+
120
+ ### Training Set Metrics
121
+ | Training set | Min | Median | Max |
122
+ |:-------------|:----|:--------|:----|
123
+ | Word count | 4 | 31.2629 | 70 |
124
+
125
+ | Label | Training Sample Count |
126
+ |:----------|:----------------------|
127
+ | no aspect | 1049 |
128
+ | aspect | 324 |
129
+
130
+ ### Training Hyperparameters
131
+ - batch_size: (4, 4)
132
+ - num_epochs: (1, 1)
133
+ - max_steps: -1
134
+ - sampling_strategy: oversampling
135
+ - num_iterations: 10
136
+ - body_learning_rate: (2e-05, 1e-05)
137
+ - head_learning_rate: 0.01
138
+ - loss: CosineSimilarityLoss
139
+ - distance_metric: cosine_distance
140
+ - margin: 0.25
141
+ - end_to_end: False
142
+ - use_amp: False
143
+ - warmup_proportion: 0.1
144
+ - seed: 42
145
+ - eval_max_steps: -1
146
+ - load_best_model_at_end: False
147
+
148
+ ### Training Results
149
+ | Epoch | Step | Training Loss | Validation Loss |
150
+ |:------:|:----:|:-------------:|:---------------:|
151
+ | 0.0001 | 1 | 0.0089 | - |
152
+ | 0.0073 | 50 | 0.7206 | - |
153
+ | 0.0146 | 100 | 0.399 | - |
154
+ | 0.0218 | 150 | 0.0596 | - |
155
+ | 0.0291 | 200 | 0.3335 | - |
156
+ | 0.0364 | 250 | 0.1854 | - |
157
+ | 0.0437 | 300 | 0.0708 | - |
158
+ | 0.0510 | 350 | 0.0161 | - |
159
+ | 0.0583 | 400 | 0.3364 | - |
160
+ | 0.0655 | 450 | 0.0949 | - |
161
+ | 0.0728 | 500 | 0.1021 | - |
162
+ | 0.0801 | 550 | 0.3917 | - |
163
+ | 0.0874 | 600 | 0.0707 | - |
164
+ | 0.0947 | 650 | 0.3885 | - |
165
+ | 0.1020 | 700 | 0.046 | - |
166
+ | 0.1092 | 750 | 0.001 | - |
167
+ | 0.1165 | 800 | 0.0024 | - |
168
+ | 0.1238 | 850 | 0.2384 | - |
169
+ | 0.1311 | 900 | 0.0215 | - |
170
+ | 0.1384 | 950 | 0.2283 | - |
171
+ | 0.1457 | 1000 | 0.4564 | - |
172
+ | 0.1529 | 1050 | 0.0017 | - |
173
+ | 0.1602 | 1100 | 0.0612 | - |
174
+ | 0.1675 | 1150 | 0.2325 | - |
175
+ | 0.1748 | 1200 | 0.0568 | - |
176
+ | 0.1821 | 1250 | 0.0096 | - |
177
+ | 0.1894 | 1300 | 0.2803 | - |
178
+ | 0.1966 | 1350 | 0.0056 | - |
179
+ | 0.2039 | 1400 | 0.0107 | - |
180
+ | 0.2112 | 1450 | 0.0042 | - |
181
+ | 0.2185 | 1500 | 0.0636 | - |
182
+ | 0.2258 | 1550 | 0.0356 | - |
183
+ | 0.2331 | 1600 | 0.2264 | - |
184
+ | 0.2403 | 1650 | 0.2335 | - |
185
+ | 0.2476 | 1700 | 0.201 | - |
186
+ | 0.2549 | 1750 | 0.0386 | - |
187
+ | 0.2622 | 1800 | 0.0032 | - |
188
+ | 0.2695 | 1850 | 0.0023 | - |
189
+ | 0.2768 | 1900 | 0.0053 | - |
190
+ | 0.2840 | 1950 | 0.0228 | - |
191
+ | 0.2913 | 2000 | 0.0006 | - |
192
+ | 0.2986 | 2050 | 0.0003 | - |
193
+ | 0.3059 | 2100 | 0.0142 | - |
194
+ | 0.3132 | 2150 | 0.099 | - |
195
+ | 0.3205 | 2200 | 0.0144 | - |
196
+ | 0.3277 | 2250 | 0.0002 | - |
197
+ | 0.3350 | 2300 | 0.0042 | - |
198
+ | 0.3423 | 2350 | 0.0359 | - |
199
+ | 0.3496 | 2400 | 0.0004 | - |
200
+ | 0.3569 | 2450 | 0.0057 | - |
201
+ | 0.3642 | 2500 | 0.0046 | - |
202
+ | 0.3714 | 2550 | 0.0015 | - |
203
+ | 0.3787 | 2600 | 0.0023 | - |
204
+ | 0.3860 | 2650 | 0.0004 | - |
205
+ | 0.3933 | 2700 | 0.0002 | - |
206
+ | 0.4006 | 2750 | 0.0002 | - |
207
+ | 0.4079 | 2800 | 0.0267 | - |
208
+ | 0.4151 | 2850 | 0.0001 | - |
209
+ | 0.4224 | 2900 | 0.0003 | - |
210
+ | 0.4297 | 2950 | 0.0037 | - |
211
+ | 0.4370 | 3000 | 0.0005 | - |
212
+ | 0.4443 | 3050 | 0.0049 | - |
213
+ | 0.4516 | 3100 | 0.2431 | - |
214
+ | 0.4588 | 3150 | 0.2577 | - |
215
+ | 0.4661 | 3200 | 0.1556 | - |
216
+ | 0.4734 | 3250 | 0.1983 | - |
217
+ | 0.4807 | 3300 | 0.0884 | - |
218
+ | 0.4880 | 3350 | 0.0003 | - |
219
+ | 0.4953 | 3400 | 0.2302 | - |
220
+ | 0.5025 | 3450 | 0.0007 | - |
221
+ | 0.5098 | 3500 | 0.0002 | - |
222
+ | 0.5171 | 3550 | 0.0001 | - |
223
+ | 0.5244 | 3600 | 0.0845 | - |
224
+ | 0.5317 | 3650 | 0.0003 | - |
225
+ | 0.5390 | 3700 | 0.0001 | - |
226
+ | 0.5462 | 3750 | 0.0001 | - |
227
+ | 0.5535 | 3800 | 0.0 | - |
228
+ | 0.5608 | 3850 | 0.0001 | - |
229
+ | 0.5681 | 3900 | 0.001 | - |
230
+ | 0.5754 | 3950 | 0.0008 | - |
231
+ | 0.5827 | 4000 | 0.002 | - |
232
+ | 0.5899 | 4050 | 0.0002 | - |
233
+ | 0.5972 | 4100 | 0.1071 | - |
234
+ | 0.6045 | 4150 | 0.0001 | - |
235
+ | 0.6118 | 4200 | 0.0001 | - |
236
+ | 0.6191 | 4250 | 0.0001 | - |
237
+ | 0.6264 | 4300 | 0.0002 | - |
238
+ | 0.6336 | 4350 | 0.0001 | - |
239
+ | 0.6409 | 4400 | 0.0 | - |
240
+ | 0.6482 | 4450 | 0.2478 | - |
241
+ | 0.6555 | 4500 | 0.0 | - |
242
+ | 0.6628 | 4550 | 0.0003 | - |
243
+ | 0.6701 | 4600 | 0.0 | - |
244
+ | 0.6773 | 4650 | 0.0002 | - |
245
+ | 0.6846 | 4700 | 0.003 | - |
246
+ | 0.6919 | 4750 | 0.0007 | - |
247
+ | 0.6992 | 4800 | 0.0006 | - |
248
+ | 0.7065 | 4850 | 0.001 | - |
249
+ | 0.7138 | 4900 | 0.0106 | - |
250
+ | 0.7210 | 4950 | 0.0001 | - |
251
+ | 0.7283 | 5000 | 0.0002 | - |
252
+ | 0.7356 | 5050 | 0.0004 | - |
253
+ | 0.7429 | 5100 | 0.0008 | - |
254
+ | 0.7502 | 5150 | 0.0508 | - |
255
+ | 0.7575 | 5200 | 0.001 | - |
256
+ | 0.7647 | 5250 | 0.0 | - |
257
+ | 0.7720 | 5300 | 0.0249 | - |
258
+ | 0.7793 | 5350 | 0.0001 | - |
259
+ | 0.7866 | 5400 | 0.1026 | - |
260
+ | 0.7939 | 5450 | 0.0 | - |
261
+ | 0.8012 | 5500 | 0.0001 | - |
262
+ | 0.8084 | 5550 | 0.0028 | - |
263
+ | 0.8157 | 5600 | 0.0008 | - |
264
+ | 0.8230 | 5650 | 0.0002 | - |
265
+ | 0.8303 | 5700 | 0.0001 | - |
266
+ | 0.8376 | 5750 | 0.0 | - |
267
+ | 0.8449 | 5800 | 0.0001 | - |
268
+ | 0.8521 | 5850 | 0.0001 | - |
269
+ | 0.8594 | 5900 | 0.0094 | - |
270
+ | 0.8667 | 5950 | 0.0001 | - |
271
+ | 0.8740 | 6000 | 0.0 | - |
272
+ | 0.8813 | 6050 | 0.0 | - |
273
+ | 0.8886 | 6100 | 0.0 | - |
274
+ | 0.8958 | 6150 | 0.0001 | - |
275
+ | 0.9031 | 6200 | 0.0002 | - |
276
+ | 0.9104 | 6250 | 0.0026 | - |
277
+ | 0.9177 | 6300 | 0.1005 | - |
278
+ | 0.9250 | 6350 | 0.0002 | - |
279
+ | 0.9323 | 6400 | 0.0004 | - |
280
+ | 0.9395 | 6450 | 0.2456 | - |
281
+ | 0.9468 | 6500 | 0.0228 | - |
282
+ | 0.9541 | 6550 | 0.022 | - |
283
+ | 0.9614 | 6600 | 0.025 | - |
284
+ | 0.9687 | 6650 | 0.0002 | - |
285
+ | 0.9760 | 6700 | 0.0003 | - |
286
+ | 0.9832 | 6750 | 0.0001 | - |
287
+ | 0.9905 | 6800 | 0.0 | - |
288
+ | 0.9978 | 6850 | 0.1145 | - |
289
+ | 1.0 | 6865 | - | 0.1868 |
290
+
291
+ ### Framework Versions
292
+ - Python: 3.10.13
293
+ - SetFit: 1.0.3
294
+ - Sentence Transformers: 3.0.1
295
+ - spaCy: 3.7.5
296
+ - Transformers: 4.36.2
297
+ - PyTorch: 2.1.2
298
+ - Datasets: 2.19.2
299
+ - Tokenizers: 0.15.2
300
+
301
+ ## Citation
302
+
303
+ ### BibTeX
304
+ ```bibtex
305
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
306
+ doi = {10.48550/ARXIV.2209.11055},
307
+ url = {https://arxiv.org/abs/2209.11055},
308
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
309
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
310
+ title = {Efficient Few-Shot Learning Without Prompts},
311
+ publisher = {arXiv},
312
+ year = {2022},
313
+ copyright = {Creative Commons Attribution 4.0 International}
314
+ }
315
+ ```
316
+
317
+ <!--
318
+ ## Glossary
319
+
320
+ *Clearly define terms in order to be accessible across audiences.*
321
+ -->
322
+
323
+ <!--
324
+ ## Model Card Authors
325
+
326
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
327
+ -->
328
+
329
+ <!--
330
+ ## Model Card Contact
331
+
332
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
333
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Funnyworld1412/ABSA_game_squad_busters-aspect",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 12,
33
+ "num_hidden_layers": 12,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.36.2",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 50000
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.36.2",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "span_context": 0,
3
+ "spacy_model": "id_core_news_trf",
4
+ "normalize_embeddings": false,
5
+ "labels": [
6
+ "no aspect",
7
+ "aspect"
8
+ ]
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf1ee9ef054bda184b5c44f059daffee0fb7586f4c19abc8ef1ec8148fc14cb1
3
+ size 497787752
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:878c3310043c54a265b6c250f628e7de1402fc24a1e1da866139d9e77f68c6ac
3
+ size 6991
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff