--- library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: tiket:munkin karena masih baru gamenya masih banyak kurang seperti fitur sosial seperti room chat atau global chat untuk pemain saling berinteraksi menurut saya itu adalah hal yang sangat penting untuk di hadirkan dalam game ini terlalu susah mencari tiket dan koin emas dan upgrade karakter sehingga ketika tidak ada kupon peti pemain hanya dipaksa bermain tanpa dapat apa apa kecuali permata - text: game:game nya bagus dan story yang seruu hanyaa ukuran yang terlalu besar jadi membutuhkan spesifikasi tinggi untuk bermain game ini - text: udh:game nya udh seru banget tapi tinggal di tambah mode yang lain jangan hanya satu sebenarnya kalo mode hanya satu agak bosen masalah jaringan juga tiba tiba jelek udh itu aja yang lain bagus kok - text: game:hal yang paling membuat tidak nyaman dalam bermain game ini adalah analog yang tidak diam ditempat atau fixed analog sehingga sangat tidak nyaman dalam memainkan game ini tolong banget nih developer supercell untuk menambah fitur pengaturan untuk mengatur fixed analog terimakasih - text: sinyal down story:tolong di tambah fitur skip story karena tiap sinyal down story akan ke reset dari awal dan kami para player harus menyelesaikan story dari awal lagi dan itu membuat sakit kepala karena harus menyelesaikan story yang berjam jam karena kalau world story memaksa player harus menyelesaikan bintang 2 sebagai wujud kekecewaan saya pipeline_tag: text-classification inference: false --- # SetFit Aspect Model This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. **Use this SetFit model to filter these possible aspect span candidates.** 3. Use a SetFit model to classify the filtered aspect span candidates. ## Model Details ### Model Description - **Model Type:** SetFit - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** id_core_news_trf - **SetFitABSA Aspect Model:** [Funnyworld1412/review_game_absa-aspect](https://huggingface.co/Funnyworld1412/review_game_absa-aspect) - **SetFitABSA Polarity Model:** [Funnyworld1412/review_game_absa-polarity](https://huggingface.co/Funnyworld1412/review_game_absa-polarity) - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | aspect | | | no aspect | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "Funnyworld1412/review_game_absa-aspect", "Funnyworld1412/review_game_absa-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 46.6389 | 94 | | Label | Training Sample Count | |:----------|:----------------------| | no aspect | 4189 | | aspect | 990 | ### Training Hyperparameters - batch_size: (4, 4) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 1 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0004 | 1 | 0.4229 | - | | 0.0193 | 50 | 0.3888 | - | | 0.0386 | 100 | 0.268 | - | | 0.0579 | 150 | 0.3151 | - | | 0.0772 | 200 | 0.0962 | - | | 0.0965 | 250 | 0.2717 | - | | 0.1158 | 300 | 0.2986 | - | | 0.1351 | 350 | 0.1456 | - | | 0.1544 | 400 | 0.3291 | - | | 0.1737 | 450 | 0.4705 | - | | 0.1931 | 500 | 0.162 | - | | 0.2124 | 550 | 0.227 | - | | 0.2317 | 600 | 0.105 | - | | 0.2510 | 650 | 0.0809 | - | | 0.2703 | 700 | 0.0608 | - | | 0.2896 | 750 | 0.0804 | - | | 0.3089 | 800 | 0.5065 | - | | 0.3282 | 850 | 0.1868 | - | | 0.3475 | 900 | 0.2777 | - | | 0.3668 | 950 | 0.0483 | - | | 0.3861 | 1000 | 0.0174 | - | | 0.4054 | 1050 | 0.0361 | - | | 0.4247 | 1100 | 0.0208 | - | | 0.4440 | 1150 | 0.1162 | - | | 0.4633 | 1200 | 0.3258 | - | | 0.4826 | 1250 | 0.4762 | - | | 0.5019 | 1300 | 0.009 | - | | 0.5212 | 1350 | 0.0445 | - | | 0.5405 | 1400 | 0.4436 | - | | 0.5598 | 1450 | 0.036 | - | | 0.5792 | 1500 | 0.2706 | - | | 0.5985 | 1550 | 0.2454 | - | | 0.6178 | 1600 | 0.0539 | - | | 0.6371 | 1650 | 0.2127 | - | | 0.6564 | 1700 | 0.174 | - | | 0.6757 | 1750 | 0.0915 | - | | 0.6950 | 1800 | 0.3465 | - | | 0.7143 | 1850 | 0.2593 | - | | 0.7336 | 1900 | 0.205 | - | | 0.7529 | 1950 | 0.2425 | - | | 0.7722 | 2000 | 0.1797 | - | | 0.7915 | 2050 | 0.0083 | - | | 0.8108 | 2100 | 0.0973 | - | | 0.8301 | 2150 | 0.1209 | - | | 0.8494 | 2200 | 0.0049 | - | | 0.8687 | 2250 | 0.0028 | - | | 0.8880 | 2300 | 0.1165 | - | | 0.9073 | 2350 | 0.046 | - | | 0.9266 | 2400 | 0.2102 | - | | 0.9459 | 2450 | 0.1639 | - | | 0.9653 | 2500 | 0.0114 | - | | 0.9846 | 2550 | 0.3658 | - | ### Framework Versions - Python: 3.10.13 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - spaCy: 3.7.5 - Transformers: 4.36.2 - PyTorch: 2.1.2 - Datasets: 2.19.2 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```