--- library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: kurangi bintang karna developer pelit dapat gold:ku kurangi bintang karna developer pelit dapat gold buat beli shop susah harus nunggu 6 jam untuk energi terisi full itupun hanya 3 biji sangat tidak memuaskan walau game cukup seru buat santai alangkah baiknya jika energy buat main di unlimit saja atau di update percepat isi energi buat play nya dan kendala di jaringan padahal sinyal wifi kencang tapi masih suka lag semoga cepat ada update supercell - text: untuk grafik story dah bagus:untuk grafik story dah bagus cuman minus di sistem gacha dan artefak di tambah game nya tidak ramah f2p jadi banyak player yang kesusahan dalam mengumpulkan primogem itu doang sih - text: gamenya asik sayangnya sinyal tiba tiba down:gamenya asik sayangnya sinyal tiba tiba down dan gk bisa login lagi - text: bertarung melawan musuh joystick sering ngebug gak:saat bertarung melawan musuh joystick sering ngebug gak bisa di gerakin dan terkadang hanya jalan lurus saja tolong diperbaiki - text: game ini 1 peti terbatas saya berharap:kekurangan game ini 1 peti terbatas saya berharap ini diubah menjadi seperti clash royale karena koin di game ini tidak bisa didapat setiap waktu kecuali top up 2 tier rank tolong di tambah sistem rank karena sistem rank akan membuat banyak player bersaing dan menambah keseruan karna ada tantangan seperti clash royale 3 sinyal bug sinyal mendadak lemah dan gk bisa masuk pertandingan karena game ini masih baru jadi wajar tapi tolong diperbaiki untuk kenyamanan pemain pipeline_tag: text-classification inference: false --- # SetFit Polarity Model This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. Use a SetFit model to filter these possible aspect span candidates. 3. **Use this SetFit model to classify the filtered aspect span candidates.** ## Model Details ### Model Description - **Model Type:** SetFit - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** id_core_news_trf - **SetFitABSA Aspect Model:** [Funnyworld1412/review_game_absa-aspect](https://huggingface.co/Funnyworld1412/review_game_absa-aspect) - **SetFitABSA Polarity Model:** [Funnyworld1412/review_game_absa-polarity](https://huggingface.co/Funnyworld1412/review_game_absa-polarity) - **Maximum Sequence Length:** 8192 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Negative |