metadata
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
- template:sd-lora
widget:
- text: in the style of <s0><s1> a painting of a tall building with many windows
output:
url: image-0.png
- text: in the style of <s0><s1> a drawing of a building with a clock tower
output:
url: image-1.png
- text: in the style of <s0><s1> the liver building is shown in this photo
output:
url: image-2.png
- text: in the style of <s0><s1> a painting of a large building with a clock tower
output:
url: image-3.png
- text: >-
in the style of <s0><s1> the grand hotel, a futuristic building with many
windows
output:
url: image-4.png
- text: in the style of <s0><s1> a large building with a clock tower on top
output:
url: image-5.png
- text: >-
in the style of <s0><s1> a large building with many windows and a clock
tower
output:
url: image-6.png
- text: in the style of <s0><s1> a large building with a clock tower in the sky
output:
url: image-7.png
- text: >-
in the style of <s0><s1> a large building with many windows and a clock
tower
output:
url: image-8.png
- text: >-
in the style of <s0><s1> the building is made of stone and has many
windows
output:
url: image-9.png
- text: in the style of <s0><s1> a large building with a purple sky
output:
url: image-10.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A photo of <s0><s1>
license: openrail++
SDXL LoRA DreamBooth - GAS17/elsalvo2
Model description
These are GAS17/elsalvo2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
Download model
Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- LoRA: download
elsalvo2.safetensors
here 💾.- Place it on your
models/Lora
folder. - On AUTOMATIC1111, load the LoRA by adding
<lora:elsalvo2:1>
to your prompt. On ComfyUI just load it as a regular LoRA.
- Place it on your
- Embeddings: download
elsalvo2_emb.safetensors
here 💾.- Place it on it on your
embeddings
folder - Use it by adding
elsalvo2_emb
to your prompt. For example,A photo of elsalvo2_emb
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
- Place it on it on your
Use it with the 🧨 diffusers library
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('GAS17/elsalvo2', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='GAS17/elsalvo2', filename='elsalvo2_emb.safetensors' repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
image = pipeline('A photo of <s0><s1>').images[0]
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept TOK
→ use <s0><s1>
in your prompt
Details
All Files & versions.
The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.