GEETHANAYAGI's picture
Upload 79 files
f9d7028 verified
import hashlib
import os
import uuid
from typing import List, Tuple, Union, Dict
import regex as re
import sentencepiece as spm
from indicnlp.normalize import indic_normalize
from indicnlp.tokenize import indic_detokenize, indic_tokenize
from indicnlp.tokenize.sentence_tokenize import DELIM_PAT_NO_DANDA, sentence_split
from indicnlp.transliterate import unicode_transliterate
from mosestokenizer import MosesSentenceSplitter
from nltk.tokenize import sent_tokenize
from sacremoses import MosesDetokenizer, MosesPunctNormalizer, MosesTokenizer
from tqdm import tqdm
from .flores_codes_map_indic import flores_codes, iso_to_flores
from .normalize_punctuation import punc_norm
from .normalize_regex_inference import EMAIL_PATTERN, normalize
def split_sentences(paragraph: str, lang: str) -> List[str]:
"""
Splits the input text paragraph into sentences. It uses `moses` for English and
`indic-nlp` for Indic languages.
Args:
paragraph (str): input text paragraph.
lang (str): flores language code.
Returns:
List[str] -> list of sentences.
"""
if lang == "eng_Latn":
with MosesSentenceSplitter(flores_codes[lang]) as splitter:
sents_moses = splitter([paragraph])
sents_nltk = sent_tokenize(paragraph)
if len(sents_nltk) < len(sents_moses):
sents = sents_nltk
else:
sents = sents_moses
return [sent.replace("\xad", "") for sent in sents]
else:
return sentence_split(paragraph, lang=flores_codes[lang], delim_pat=DELIM_PAT_NO_DANDA)
def add_token(sent: str, src_lang: str, tgt_lang: str, delimiter: str = " ") -> str:
"""
Add special tokens indicating source and target language to the start of the input sentence.
The resulting string will have the format: "`{src_lang} {tgt_lang} {input_sentence}`".
Args:
sent (str): input sentence to be translated.
src_lang (str): flores lang code of the input sentence.
tgt_lang (str): flores lang code in which the input sentence will be translated.
delimiter (str): separator to add between language tags and input sentence (default: " ").
Returns:
str: input sentence with the special tokens added to the start.
"""
return src_lang + delimiter + tgt_lang + delimiter + sent
def apply_lang_tags(sents: List[str], src_lang: str, tgt_lang: str) -> List[str]:
"""
Add special tokens indicating source and target language to the start of the each input sentence.
Each resulting input sentence will have the format: "`{src_lang} {tgt_lang} {input_sentence}`".
Args:
sent (str): input sentence to be translated.
src_lang (str): flores lang code of the input sentence.
tgt_lang (str): flores lang code in which the input sentence will be translated.
Returns:
List[str]: list of input sentences with the special tokens added to the start.
"""
tagged_sents = []
for sent in sents:
tagged_sent = add_token(sent.strip(), src_lang, tgt_lang)
tagged_sents.append(tagged_sent)
return tagged_sents
def truncate_long_sentences(
sents: List[str], placeholder_entity_map_sents: List[Dict]
) -> Tuple[List[str], List[Dict]]:
"""
Truncates the sentences that exceed the maximum sequence length.
The maximum sequence for the IndicTrans2 model is limited to 256 tokens.
Args:
sents (List[str]): list of input sentences to truncate.
Returns:
Tuple[List[str], List[Dict]]: tuple containing the list of sentences with truncation applied and the updated placeholder entity maps.
"""
MAX_SEQ_LEN = 256
new_sents = []
placeholders = []
for j, sent in enumerate(sents):
words = sent.split()
num_words = len(words)
if num_words > MAX_SEQ_LEN:
sents = []
i = 0
while i <= len(words):
sents.append(" ".join(words[i : i + MAX_SEQ_LEN]))
i += MAX_SEQ_LEN
placeholders.extend([placeholder_entity_map_sents[j]] * (len(sents)))
new_sents.extend(sents)
else:
placeholders.append(placeholder_entity_map_sents[j])
new_sents.append(sent)
return new_sents, placeholders
class Model:
"""
Model class to run the IndicTransv2 models using python interface.
"""
def __init__(
self,
ckpt_dir: str,
device: str = "cuda",
input_lang_code_format: str = "flores",
model_type: str = "ctranslate2",
):
"""
Initialize the model class.
Args:
ckpt_dir (str): path of the model checkpoint directory.
device (str, optional): where to load the model (defaults: cuda).
"""
self.ckpt_dir = ckpt_dir
self.en_tok = MosesTokenizer(lang="en")
self.en_normalizer = MosesPunctNormalizer()
self.en_detok = MosesDetokenizer(lang="en")
self.xliterator = unicode_transliterate.UnicodeIndicTransliterator()
print("Initializing sentencepiece model for SRC and TGT")
self.sp_src = spm.SentencePieceProcessor(
model_file=os.path.join(ckpt_dir, "vocab", "model.SRC")
)
self.sp_tgt = spm.SentencePieceProcessor(
model_file=os.path.join(ckpt_dir, "vocab", "model.TGT")
)
self.input_lang_code_format = input_lang_code_format
print("Initializing model for translation")
# initialize the model
if model_type == "ctranslate2":
import ctranslate2
self.translator = ctranslate2.Translator(
self.ckpt_dir, device=device
) # , compute_type="auto")
self.translate_lines = self.ctranslate2_translate_lines
elif model_type == "fairseq":
from .custom_interactive import Translator
self.translator = Translator(
data_dir=os.path.join(self.ckpt_dir, "final_bin"),
checkpoint_path=os.path.join(self.ckpt_dir, "model", "checkpoint_best.pt"),
batch_size=100,
)
self.translate_lines = self.fairseq_translate_lines
else:
raise NotImplementedError(f"Unknown model_type: {model_type}")
def ctranslate2_translate_lines(self, lines: List[str]) -> List[str]:
tokenized_sents = [x.strip().split(" ") for x in lines]
translations = self.translator.translate_batch(
tokenized_sents,
max_batch_size=9216,
batch_type="tokens",
max_input_length=160,
max_decoding_length=256,
beam_size=5,
)
translations = [" ".join(x.hypotheses[0]) for x in translations]
return translations
def fairseq_translate_lines(self, lines: List[str]) -> List[str]:
return self.translator.translate(lines)
def paragraphs_batch_translate__multilingual(self, batch_payloads: List[tuple]) -> List[str]:
"""
Translates a batch of input paragraphs (including pre/post processing)
from any language to any language.
Args:
batch_payloads (List[tuple]): batch of long input-texts to be translated, each in format: (paragraph, src_lang, tgt_lang)
Returns:
List[str]: batch of paragraph-translations in the respective languages.
"""
paragraph_id_to_sentence_range = []
global__sents = []
global__preprocessed_sents = []
global__preprocessed_sents_placeholder_entity_map = []
for i in range(len(batch_payloads)):
paragraph, src_lang, tgt_lang = batch_payloads[i]
if self.input_lang_code_format == "iso":
src_lang, tgt_lang = iso_to_flores[src_lang], iso_to_flores[tgt_lang]
batch = split_sentences(paragraph, src_lang)
global__sents.extend(batch)
preprocessed_sents, placeholder_entity_map_sents = self.preprocess_batch(
batch, src_lang, tgt_lang
)
global_sentence_start_index = len(global__preprocessed_sents)
global__preprocessed_sents.extend(preprocessed_sents)
global__preprocessed_sents_placeholder_entity_map.extend(placeholder_entity_map_sents)
paragraph_id_to_sentence_range.append(
(global_sentence_start_index, len(global__preprocessed_sents))
)
translations = self.translate_lines(global__preprocessed_sents)
translated_paragraphs = []
for paragraph_id, sentence_range in enumerate(paragraph_id_to_sentence_range):
tgt_lang = batch_payloads[paragraph_id][2]
if self.input_lang_code_format == "iso":
tgt_lang = iso_to_flores[tgt_lang]
postprocessed_sents = self.postprocess(
translations[sentence_range[0] : sentence_range[1]],
global__preprocessed_sents_placeholder_entity_map[
sentence_range[0] : sentence_range[1]
],
tgt_lang,
)
translated_paragraph = " ".join(postprocessed_sents)
translated_paragraphs.append(translated_paragraph)
return translated_paragraphs
# translate a batch of sentences from src_lang to tgt_lang
def batch_translate(self, batch: List[str], src_lang: str, tgt_lang: str) -> List[str]:
"""
Translates a batch of input sentences (including pre/post processing)
from source language to target language.
Args:
batch (List[str]): batch of input sentences to be translated.
src_lang (str): flores source language code.
tgt_lang (str): flores target language code.
Returns:
List[str]: batch of translated-sentences generated by the model.
"""
assert isinstance(batch, list)
if self.input_lang_code_format == "iso":
src_lang, tgt_lang = iso_to_flores[src_lang], iso_to_flores[tgt_lang]
preprocessed_sents, placeholder_entity_map_sents = self.preprocess_batch(
batch, src_lang, tgt_lang
)
translations = self.translate_lines(preprocessed_sents)
return self.postprocess(translations, placeholder_entity_map_sents, tgt_lang)
# translate a paragraph from src_lang to tgt_lang
def translate_paragraph(self, paragraph: str, src_lang: str, tgt_lang: str) -> str:
"""
Translates an input text paragraph (including pre/post processing)
from source language to target language.
Args:
paragraph (str): input text paragraph to be translated.
src_lang (str): flores source language code.
tgt_lang (str): flores target language code.
Returns:
str: paragraph translation generated by the model.
"""
assert isinstance(paragraph, str)
if self.input_lang_code_format == "iso":
flores_src_lang = iso_to_flores[src_lang]
else:
flores_src_lang = src_lang
sents = split_sentences(paragraph, flores_src_lang)
postprocessed_sents = self.batch_translate(sents, src_lang, tgt_lang)
translated_paragraph = " ".join(postprocessed_sents)
return translated_paragraph
def preprocess_batch(self, batch: List[str], src_lang: str, tgt_lang: str) -> List[str]:
"""
Preprocess an array of sentences by normalizing, tokenization, and possibly transliterating it. It also tokenizes the
normalized text sequences using sentence piece tokenizer and also adds language tags.
Args:
batch (List[str]): input list of sentences to preprocess.
src_lang (str): flores language code of the input text sentences.
tgt_lang (str): flores language code of the output text sentences.
Returns:
Tuple[List[str], List[Dict]]: a tuple of list of preprocessed input text sentences and also a corresponding list of dictionary
mapping placeholders to their original values.
"""
preprocessed_sents, placeholder_entity_map_sents = self.preprocess(batch, lang=src_lang)
tokenized_sents = self.apply_spm(preprocessed_sents)
tokenized_sents, placeholder_entity_map_sents = truncate_long_sentences(
tokenized_sents, placeholder_entity_map_sents
)
tagged_sents = apply_lang_tags(tokenized_sents, src_lang, tgt_lang)
return tagged_sents, placeholder_entity_map_sents
def apply_spm(self, sents: List[str]) -> List[str]:
"""
Applies sentence piece encoding to the batch of input sentences.
Args:
sents (List[str]): batch of the input sentences.
Returns:
List[str]: batch of encoded sentences with sentence piece model
"""
return [" ".join(self.sp_src.encode(sent, out_type=str)) for sent in sents]
def preprocess_sent(
self,
sent: str,
normalizer: Union[MosesPunctNormalizer, indic_normalize.IndicNormalizerFactory],
lang: str,
) -> Tuple[str, Dict]:
"""
Preprocess an input text sentence by normalizing, tokenization, and possibly transliterating it.
Args:
sent (str): input text sentence to preprocess.
normalizer (Union[MosesPunctNormalizer, indic_normalize.IndicNormalizerFactory]): an object that performs normalization on the text.
lang (str): flores language code of the input text sentence.
Returns:
Tuple[str, Dict]: A tuple containing the preprocessed input text sentence and a corresponding dictionary
mapping placeholders to their original values.
"""
iso_lang = flores_codes[lang]
sent = punc_norm(sent, iso_lang)
sent, placeholder_entity_map = normalize(sent)
transliterate = True
if lang.split("_")[1] in ["Arab", "Aran", "Olck", "Mtei", "Latn"]:
transliterate = False
if iso_lang == "en":
processed_sent = " ".join(
self.en_tok.tokenize(self.en_normalizer.normalize(sent.strip()), escape=False)
)
elif transliterate:
# transliterates from the any specific language to devanagari
# which is why we specify lang2_code as "hi".
processed_sent = self.xliterator.transliterate(
" ".join(
indic_tokenize.trivial_tokenize(normalizer.normalize(sent.strip()), iso_lang)
),
iso_lang,
"hi",
).replace(" ् ", "्")
else:
# we only need to transliterate for joint training
processed_sent = " ".join(
indic_tokenize.trivial_tokenize(normalizer.normalize(sent.strip()), iso_lang)
)
return processed_sent, placeholder_entity_map
def preprocess(self, sents: List[str], lang: str):
"""
Preprocess an array of sentences by normalizing, tokenization, and possibly transliterating it.
Args:
batch (List[str]): input list of sentences to preprocess.
lang (str): flores language code of the input text sentences.
Returns:
Tuple[List[str], List[Dict]]: a tuple of list of preprocessed input text sentences and also a corresponding list of dictionary
mapping placeholders to their original values.
"""
processed_sents, placeholder_entity_map_sents = [], []
if lang == "eng_Latn":
normalizer = None
else:
normfactory = indic_normalize.IndicNormalizerFactory()
normalizer = normfactory.get_normalizer(flores_codes[lang])
for sent in sents:
sent, placeholder_entity_map = self.preprocess_sent(sent, normalizer, lang)
processed_sents.append(sent)
placeholder_entity_map_sents.append(placeholder_entity_map)
return processed_sents, placeholder_entity_map_sents
def postprocess(
self,
sents: List[str],
placeholder_entity_map: List[Dict],
lang: str,
common_lang: str = "hin_Deva",
) -> List[str]:
"""
Postprocesses a batch of input sentences after the translation generations.
Args:
sents (List[str]): batch of translated sentences to postprocess.
placeholder_entity_map (List[Dict]): dictionary mapping placeholders to the original entity values.
lang (str): flores language code of the input sentences.
common_lang (str, optional): flores language code of the transliterated language (defaults: hin_Deva).
Returns:
List[str]: postprocessed batch of input sentences.
"""
lang_code, script_code = lang.split("_")
# SPM decode
for i in range(len(sents)):
# sent_tokens = sents[i].split(" ")
# sents[i] = self.sp_tgt.decode(sent_tokens)
sents[i] = sents[i].replace(" ", "").replace("▁", " ").strip()
# Fixes for Perso-Arabic scripts
# TODO: Move these normalizations inside indic-nlp-library
if script_code in {"Arab", "Aran"}:
# UrduHack adds space before punctuations. Since the model was trained without fixing this issue, let's fix it now
sents[i] = sents[i].replace(" ؟", "؟").replace(" ۔", "۔").replace(" ،", "،")
# Kashmiri bugfix for palatalization: https://github.com/AI4Bharat/IndicTrans2/issues/11
sents[i] = sents[i].replace("ٮ۪", "ؠ")
assert len(sents) == len(placeholder_entity_map)
for i in range(0, len(sents)):
for key in placeholder_entity_map[i].keys():
sents[i] = sents[i].replace(key, placeholder_entity_map[i][key])
# Detokenize and transliterate to native scripts if applicable
postprocessed_sents = []
if lang == "eng_Latn":
for sent in sents:
postprocessed_sents.append(self.en_detok.detokenize(sent.split(" ")))
else:
for sent in sents:
outstr = indic_detokenize.trivial_detokenize(
self.xliterator.transliterate(
sent, flores_codes[common_lang], flores_codes[lang]
),
flores_codes[lang],
)
# Oriya bug: indic-nlp-library produces ଯ଼ instead of ୟ when converting from Devanagari to Odia
# TODO: Find out what's the issue with unicode transliterator for Oriya and fix it
if lang_code == "ory":
outstr = outstr.replace("ଯ଼", 'ୟ')
postprocessed_sents.append(outstr)
return postprocessed_sents