--- metrics: - code_eval library_name: transformers tags: - code - mlx base_model: WizardLMTeam/WizardCoder-33B-V1.1 model-index: - name: WizardCoder results: - task: type: text-generation dataset: name: HumanEval type: openai_humaneval metrics: - type: pass@1 value: 0.799 name: pass@1 verified: false --- # GGorman/WizardCoder-33B-V1.1-Q8-mlx The Model [GGorman/WizardCoder-33B-V1.1-Q8-mlx](https://huggingface.co/GGorman/WizardCoder-33B-V1.1-Q8-mlx) was converted to MLX format from [WizardLMTeam/WizardCoder-33B-V1.1](https://huggingface.co/WizardLMTeam/WizardCoder-33B-V1.1) using mlx-lm version **0.19.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("GGorman/WizardCoder-33B-V1.1-Q8-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```