Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -1
- a2c-PandaReachDense-v2/data +37 -36
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- a2c-PandaReachDense-v2/system_info.txt +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -3.33 +/- 0.75
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6924b1bb852f736fae5e950f4e0f807c859341e7e824b81a7dd1bc3111a4d499
|
3 |
+
size 108047
|
a2c-PandaReachDense-v2/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,34 +19,12 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"
|
23 |
-
|
24 |
-
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
-
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
-
"_shape": null,
|
27 |
-
"dtype": null,
|
28 |
-
"_np_random": null
|
29 |
-
},
|
30 |
-
"action_space": {
|
31 |
-
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
-
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
-
"dtype": "float32",
|
34 |
-
"_shape": [
|
35 |
-
3
|
36 |
-
],
|
37 |
-
"low": "[-1. -1. -1.]",
|
38 |
-
"high": "[1. 1. 1.]",
|
39 |
-
"bounded_below": "[ True True True]",
|
40 |
-
"bounded_above": "[ True True True]",
|
41 |
-
"_np_random": null
|
42 |
-
},
|
43 |
-
"n_envs": 4,
|
44 |
-
"num_timesteps": 1000000,
|
45 |
-
"_total_timesteps": 1000000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +33,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[-1.
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,29 +44,52 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
"use_sde": false,
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
|
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
90 |
"ent_coef": 0.0,
|
91 |
"vf_coef": 0.5,
|
92 |
"max_grad_norm": 0.5,
|
93 |
-
"normalize_advantage": false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1792ac35e0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f1792ac4500>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 2000000,
|
23 |
+
"_total_timesteps": 2000000,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1681217332620792045,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwbLIPmQmrTxfngw/wbLIPmQmrTxfngw/wbLIPmQmrTxfngw/wbLIPmQmrTxfngw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATey6vwGUQr/T6ou/MhWBv7cN1D7oevA+DqzSP20aFb/Blpw/xmDEP/4SPj4pvii/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADBssg+ZCatPF+eDD/0DhO8MJuLunwLHzvBssg+ZCatPF+eDD/0DhO8MJuLunwLHzvBssg+ZCatPF+eDD/0DhO8MJuLunwLHzvBssg+ZCatPF+eDD/0DhO8MJuLunwLHzuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.39198878 0.02113647 0.54929155]\n [0.39198878 0.02113647 0.54929155]\n [0.39198878 0.02113647 0.54929155]\n [0.39198878 0.02113647 0.54929155]]",
|
38 |
+
"desired_goal": "[[-1.4603363 -0.76007086 -1.0931038 ]\n [-1.0084593 0.41416714 0.4696877 ]\n [ 1.6458757 -0.5824345 1.2233506 ]\n [ 1.5342033 0.18561932 -0.6591516 ]]",
|
39 |
+
"observation": "[[ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]\n [ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]\n [ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]\n [ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAG0faPR6bhjutX3U+D7PFPQSYBLwZI5Y+0bYWvQ7FAr3aEsE8ok1XvQ5tC76D+A0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.10658094 0.00410785 0.23962279]\n [ 0.09653293 -0.00809288 0.29323652]\n [-0.03679544 -0.03192621 0.02356856]\n [-0.05256427 -0.1361582 0.13864331]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
"use_sde": false,
|
54 |
"sde_sample_freq": -1,
|
55 |
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgsmNImvNAMCUhpRSlIwBbJRLMowBdJRHQLVpYpON5t51fZQoaAZoCWgPQwjUYvAw7VsGwJSGlFKUaBVLMmgWR0C1aTgq7ROUdX2UKGgGaAloD0MIHa9A9KTM+7+UhpRSlGgVSzJoFkdAtWkMdjoZAXV9lChoBmgJaA9DCEsDP6phfxHAlIaUUpRoFUsyaBZHQLVo4VhCtzV1fZQoaAZoCWgPQwjqA8k7h9ITwJSGlFKUaBVLMmgWR0C1adBgNPP+dX2UKGgGaAloD0MI6pJxjGTvBcCUhpRSlGgVSzJoFkdAtWmmIAOrhnV9lChoBmgJaA9DCLB2FOeogwXAlIaUUpRoFUsyaBZHQLVpemnwXqJ1fZQoaAZoCWgPQwjik04kmPoRwJSGlFKUaBVLMmgWR0C1aU9JOFg2dX2UKGgGaAloD0MIxsIQOX39BcCUhpRSlGgVSzJoFkdAtWpAFzMibHV9lChoBmgJaA9DCFiNJayNcQrAlIaUUpRoFUsyaBZHQLVqFaaTfSB1fZQoaAZoCWgPQwjiyAORRToFwJSGlFKUaBVLMmgWR0C1aeoSYgJUdX2UKGgGaAloD0MIpRMJppoZDcCUhpRSlGgVSzJoFkdAtWm+3VkMC3V9lChoBmgJaA9DCKcgPxu5DgLAlIaUUpRoFUsyaBZHQLVqr1m8M/h1fZQoaAZoCWgPQwipT3KHTYQHwJSGlFKUaBVLMmgWR0C1aoTlxOtXdX2UKGgGaAloD0MINuUK73LBEsCUhpRSlGgVSzJoFkdAtWpZNj9XLnV9lChoBmgJaA9DCAEUI0vm2AzAlIaUUpRoFUsyaBZHQLVqLikfs/p1fZQoaAZoCWgPQwjGFKxxNh0RwJSGlFKUaBVLMmgWR0C1axxxT850dX2UKGgGaAloD0MInkXvVMAdB8CUhpRSlGgVSzJoFkdAtWryAjIJaHV9lChoBmgJaA9DCN1AgXfyiQ3AlIaUUpRoFUsyaBZHQLVqxk8zQ/p1fZQoaAZoCWgPQwjO/kC5bV8FwJSGlFKUaBVLMmgWR0C1apsmfGuLdX2UKGgGaAloD0MIg4dp39z/BsCUhpRSlGgVSzJoFkdAtWvLJJXhfnV9lChoBmgJaA9DCDc2O1J9BwXAlIaUUpRoFUsyaBZHQLVroSjQAuJ1fZQoaAZoCWgPQwiSrS6nBOQDwJSGlFKUaBVLMmgWR0C1a3XE61b8dX2UKGgGaAloD0MIuatXkdGBAcCUhpRSlGgVSzJoFkdAtWtK6shgV3V9lChoBmgJaA9DCOaSqu0m+BDAlIaUUpRoFUsyaBZHQLVsfy0rsjV1fZQoaAZoCWgPQwh3EDtT6GwQwJSGlFKUaBVLMmgWR0C1bFUOuq3mdX2UKGgGaAloD0MItcNfkzWKDcCUhpRSlGgVSzJoFkdAtWwppDeCTXV9lChoBmgJaA9DCFsjgnFw6QLAlIaUUpRoFUsyaBZHQLVr/rDqGDd1fZQoaAZoCWgPQwh/UBcplEULwJSGlFKUaBVLMmgWR0C1bS8enyd4dX2UKGgGaAloD0MIexUZHZCEA8CUhpRSlGgVSzJoFkdAtW0E9wFTvXV9lChoBmgJaA9DCLQ7pBggEQTAlIaUUpRoFUsyaBZHQLVs2YL9deJ1fZQoaAZoCWgPQwhjuaXVkLgQwJSGlFKUaBVLMmgWR0C1bK6cNH6NdX2UKGgGaAloD0MI+g5+4gC6BMCUhpRSlGgVSzJoFkdAtW3iM72crnV9lChoBmgJaA9DCM2spYC0fwbAlIaUUpRoFUsyaBZHQLVtuFG5MDh1fZQoaAZoCWgPQwgfuwuUFJgPwJSGlFKUaBVLMmgWR0C1bY0BOpKjdX2UKGgGaAloD0MIbCIzF7gMEMCUhpRSlGgVSzJoFkdAtW1iGbkOqnV9lChoBmgJaA9DCCF3EaYoVxDAlIaUUpRoFUsyaBZHQLVulnZ00WN1fZQoaAZoCWgPQwj5vOKpR7oFwJSGlFKUaBVLMmgWR0C1bmxkd3jddX2UKGgGaAloD0MI8DMuHAhpCcCUhpRSlGgVSzJoFkdAtW5BEroW6HV9lChoBmgJaA9DCIeiQJ/IoxDAlIaUUpRoFUsyaBZHQLVuFid8Rcx1fZQoaAZoCWgPQwiwVYLF4QwFwJSGlFKUaBVLMmgWR0C1b0tehPCVdX2UKGgGaAloD0MIeAlOfSC5EMCUhpRSlGgVSzJoFkdAtW8hN34bj3V9lChoBmgJaA9DCDFdiNUfQQjAlIaUUpRoFUsyaBZHQLVu9eNDMNd1fZQoaAZoCWgPQwjzAuyjUzcGwJSGlFKUaBVLMmgWR0C1bssQEpy7dX2UKGgGaAloD0MI0lPkEHGTCcCUhpRSlGgVSzJoFkdAtXAGaG5+Y3V9lChoBmgJaA9DCCLH1jOEsxDAlIaUUpRoFUsyaBZHQLVv3EF4cFR1fZQoaAZoCWgPQwiwjXiym1kFwJSGlFKUaBVLMmgWR0C1b7ErGza9dX2UKGgGaAloD0MISwUVVb9yCcCUhpRSlGgVSzJoFkdAtW+GScLBsXV9lChoBmgJaA9DCBAk7xzKEAXAlIaUUpRoFUsyaBZHQLVwnkVN5+p1fZQoaAZoCWgPQwh7Mv/om0QTwJSGlFKUaBVLMmgWR0C1cHP/rB0qdX2UKGgGaAloD0MIa378pUUdEMCUhpRSlGgVSzJoFkdAtXBIXMyJsXV9lChoBmgJaA9DCChlUkMbIAjAlIaUUpRoFUsyaBZHQLVwHV3EAHV1fZQoaAZoCWgPQwirsBnggowTwJSGlFKUaBVLMmgWR0C1cQ1cdHUddX2UKGgGaAloD0MIXkpdMo7xEsCUhpRSlGgVSzJoFkdAtXDi9AX2unV9lChoBmgJaA9DCDYgQlw5KxHAlIaUUpRoFUsyaBZHQLVwt0NSZSh1fZQoaAZoCWgPQwiMnfASnHoJwJSGlFKUaBVLMmgWR0C1cIwfU4JedX2UKGgGaAloD0MIQukLIee9EsCUhpRSlGgVSzJoFkdAtXF/6XSjQHV9lChoBmgJaA9DCMxDpnwICgjAlIaUUpRoFUsyaBZHQLVxVaSLZSN1fZQoaAZoCWgPQwjmzHaFPjgDwJSGlFKUaBVLMmgWR0C1cSn/HYHxdX2UKGgGaAloD0MI4iNiSiRRB8CUhpRSlGgVSzJoFkdAtXD+2H+IdnV9lChoBmgJaA9DCJg1scBXVArAlIaUUpRoFUsyaBZHQLVx81EVnEl1fZQoaAZoCWgPQwghsHJokU0MwJSGlFKUaBVLMmgWR0C1ccjvZyuIdX2UKGgGaAloD0MIhiAHJcx0CsCUhpRSlGgVSzJoFkdAtXGdOclPanV9lChoBmgJaA9DCGjMJOoFfwfAlIaUUpRoFUsyaBZHQLVxciRGMGZ1fZQoaAZoCWgPQwjU8C2sG88CwJSGlFKUaBVLMmgWR0C1cmOIInjRdX2UKGgGaAloD0MIQdR9AFJbC8CUhpRSlGgVSzJoFkdAtXI5I+W4VnV9lChoBmgJaA9DCKSoM/eQMAvAlIaUUpRoFUsyaBZHQLVyDXu3MIN1fZQoaAZoCWgPQwjWHvZCATsKwJSGlFKUaBVLMmgWR0C1ceJ2U0N0dX2UKGgGaAloD0MIyxRzEHSUDcCUhpRSlGgVSzJoFkdAtXLWknCwbHV9lChoBmgJaA9DCD52FygpEArAlIaUUpRoFUsyaBZHQLVyrDXe3x51fZQoaAZoCWgPQwiAngYMkj4JwJSGlFKUaBVLMmgWR0C1coCQHRkVdX2UKGgGaAloD0MISOAPP//9A8CUhpRSlGgVSzJoFkdAtXJVgVoHs3V9lChoBmgJaA9DCH8yxofZKw7AlIaUUpRoFUsyaBZHQLVzRiS7oSt1fZQoaAZoCWgPQwgj88gfDGwQwJSGlFKUaBVLMmgWR0C1cxvDtPYWdX2UKGgGaAloD0MIiIIZU7BGCMCUhpRSlGgVSzJoFkdAtXLwIY3vQXV9lChoBmgJaA9DCATidf2CfQPAlIaUUpRoFUsyaBZHQLVyxPfKp1l1fZQoaAZoCWgPQwhWtg95y7UKwJSGlFKUaBVLMmgWR0C1c70yYXwcdX2UKGgGaAloD0MIRX9o5sn1AsCUhpRSlGgVSzJoFkdAtXOS94/u9nV9lChoBmgJaA9DCH6nyYy3RRLAlIaUUpRoFUsyaBZHQLVzZ0mtyPx1fZQoaAZoCWgPQwjhJM0f09oFwJSGlFKUaBVLMmgWR0C1czwevIOpdX2UKGgGaAloD0MIdGA5QgYSBcCUhpRSlGgVSzJoFkdAtXQvYsd1dXV9lChoBmgJaA9DCBQhdTv7ygnAlIaUUpRoFUsyaBZHQLV0BRMvh611fZQoaAZoCWgPQwi0WIrkKwELwJSGlFKUaBVLMmgWR0C1c9lfNRm9dX2UKGgGaAloD0MIHAx1WOF2DMCUhpRSlGgVSzJoFkdAtXOuRq46O3V9lChoBmgJaA9DCCl2NA71GwfAlIaUUpRoFUsyaBZHQLV0n1twaR91fZQoaAZoCWgPQwjp8Xub/nwRwJSGlFKUaBVLMmgWR0C1dHUaAFxGdX2UKGgGaAloD0MIdA0zNJ6oCsCUhpRSlGgVSzJoFkdAtXRJhUipvXV9lChoBmgJaA9DCAQeGED4UAPAlIaUUpRoFUsyaBZHQLV0Hnyup0h1fZQoaAZoCWgPQwgHswkwLJ8KwJSGlFKUaBVLMmgWR0C1dQ7TH80ldX2UKGgGaAloD0MIrU7OUNyRB8CUhpRSlGgVSzJoFkdAtXTkaWHDaXV9lChoBmgJaA9DCA72JobkhBLAlIaUUpRoFUsyaBZHQLV0uNOuaF51fZQoaAZoCWgPQwhDq5MzFNcCwJSGlFKUaBVLMmgWR0C1dI2tdRixdX2UKGgGaAloD0MIcvkP6bcPEMCUhpRSlGgVSzJoFkdAtXV+K77KrHV9lChoBmgJaA9DCHDP86eN2hHAlIaUUpRoFUsyaBZHQLV1U7ojfN11fZQoaAZoCWgPQwhMM93rpI4QwJSGlFKUaBVLMmgWR0C1dSf9P1tgdX2UKGgGaAloD0MIQ1N2+kGdC8CUhpRSlGgVSzJoFkdAtXT8xgy/K3V9lChoBmgJaA9DCGggls0csgnAlIaUUpRoFUsyaBZHQLV17DdP+GZ1fZQoaAZoCWgPQwikq3R3nU0DwJSGlFKUaBVLMmgWR0C1dcHGXHBDdX2UKGgGaAloD0MI2ubG9ITFBsCUhpRSlGgVSzJoFkdAtXWWDYh+v3V9lChoBmgJaA9DCGQhOgSO5ArAlIaUUpRoFUsyaBZHQLV1atZFG5N1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 100000,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
69 |
"ent_coef": 0.0,
|
70 |
"vf_coef": 0.5,
|
71 |
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28f51383b47b04e8eec94a9c56c0021ebe11ae0c680c9fe14e348cc979115c8d
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adcee5484ebe4a4bd2922e25bd34b970ea39ff0405a34a2664a137233a534e26
|
3 |
size 46014
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
- Python: 3.9.16
|
3 |
-
- Stable-Baselines3: 1.
|
4 |
- PyTorch: 2.0.0+cu118
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
|
|
1 |
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
- PyTorch: 2.0.0+cu118
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f74a875bf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f74a8781180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680632497128888205, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAN59dPnb5DLxz0+Q+N59dPnb5DLxz0+Q+N59dPnb5DLxz0+Q+N59dPnb5DLxz0+Q+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcOilv1KaWz8x+Bo/A1QWv3mPB79yN6A/UWXHvlmezL8a7Kq/84aLv8jJxj+DFae/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA3n10+dvkMvHPT5D5T76c7O4k8uxxv1Ds3n10+dvkMvHPT5D5T76c7O4k8uxxv1Ds3n10+dvkMvHPT5D5T76c7O4k8uxxv1Ds3n10+dvkMvHPT5D5T76c7O4k8uxxv1DuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.21642767 -0.0086044 0.44692573]\n [ 0.21642767 -0.0086044 0.44692573]\n [ 0.21642767 -0.0086044 0.44692573]\n [ 0.21642767 -0.0086044 0.44692573]]", "desired_goal": "[[-1.2961559 0.8578235 0.6053496 ]\n [-0.5872194 -0.52953297 1.251692 ]\n [-0.38944486 -1.5985824 -1.3353302 ]\n [-1.0900558 1.5530329 -1.305344 ]]", "observation": "[[ 0.21642767 -0.0086044 0.44692573 0.00512497 -0.00287683 0.00648297]\n [ 0.21642767 -0.0086044 0.44692573 0.00512497 -0.00287683 0.00648297]\n [ 0.21642767 -0.0086044 0.44692573 0.00512497 -0.00287683 0.00648297]\n [ 0.21642767 -0.0086044 0.44692573 0.00512497 -0.00287683 0.00648297]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkoPwvSi5A77AGlg+OXWwubbHb7x2HsY9k+HvvQddOr1E0Yo+dzq0PSgULz2+Bko9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11743845 -0.128636 0.21103954]\n [-0.00033657 -0.01463502 0.09673779]\n [-0.11712947 -0.04549887 0.27112782]\n [ 0.08800214 0.04274383 0.04932284]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDvRQ24bR7b+UhpRSlIwBbJRLMowBdJRHQKlqh4B3iaR1fZQoaAZoCWgPQwjNj7+0qA/zv5SGlFKUaBVLMmgWR0Cpakpaq0dBdX2UKGgGaAloD0MIkiIyrOKN+L+UhpRSlGgVSzJoFkdAqWoL1Iy0r3V9lChoBmgJaA9DCEku/yH9tv2/lIaUUpRoFUsyaBZHQKlpy8ujASF1fZQoaAZoCWgPQwgfEynN5rHzv5SGlFKUaBVLMmgWR0Cpa7LTYukDdX2UKGgGaAloD0MIjSlY42y6C8CUhpRSlGgVSzJoFkdAqWt1iKBNEnV9lChoBmgJaA9DCEyN0M/Ua++/lIaUUpRoFUsyaBZHQKlrNwiJO351fZQoaAZoCWgPQwhO8iN+xZr2v5SGlFKUaBVLMmgWR0CpavatT1kEdX2UKGgGaAloD0MIkZ23sdlxBMCUhpRSlGgVSzJoFkdAqWz8yxiXpnV9lChoBmgJaA9DCDY9KChFywjAlIaUUpRoFUsyaBZHQKlsv3Zf2K51fZQoaAZoCWgPQwh8Yp0q3zP/v5SGlFKUaBVLMmgWR0CpbIDe0ojOdX2UKGgGaAloD0MIsRU0LbEy97+UhpRSlGgVSzJoFkdAqWxAfbKzRnV9lChoBmgJaA9DCN82UyEeyQPAlIaUUpRoFUsyaBZHQKluMDoyKvV1fZQoaAZoCWgPQwj44LVLG47uv5SGlFKUaBVLMmgWR0CpbfMUh3aBdX2UKGgGaAloD0MII4JxcOnY8r+UhpRSlGgVSzJoFkdAqW20fT1CgXV9lChoBmgJaA9DCAyTqYJRCQbAlIaUUpRoFUsyaBZHQKltdFmWdEt1fZQoaAZoCWgPQwi2Z5YEqOn1v5SGlFKUaBVLMmgWR0Cpb1/VZs9CdX2UKGgGaAloD0MIqHFvfsNE7b+UhpRSlGgVSzJoFkdAqW8iiVSn+HV9lChoBmgJaA9DCH14liAjoOm/lIaUUpRoFUsyaBZHQKlu5A3T/hl1fZQoaAZoCWgPQwivljszwZAEwJSGlFKUaBVLMmgWR0CpbqPUz9CNdX2UKGgGaAloD0MIiuWWVkMi+L+UhpRSlGgVSzJoFkdAqXChGKAJ9nV9lChoBmgJaA9DCD0Og/krRATAlIaUUpRoFUsyaBZHQKlwY96C17Z1fZQoaAZoCWgPQwj+1k6UhMTyv5SGlFKUaBVLMmgWR0CpcCU7jkuIdX2UKGgGaAloD0MIw0maP6a19L+UhpRSlGgVSzJoFkdAqW/kz/IbO3V9lChoBmgJaA9DCEAXDRmPUg7AlIaUUpRoFUsyaBZHQKlx8J9iMHd1fZQoaAZoCWgPQwgD7nn+tNEBwJSGlFKUaBVLMmgWR0CpcbReb/fgdX2UKGgGaAloD0MITTEHQUdLAMCUhpRSlGgVSzJoFkdAqXF254GD+XV9lChoBmgJaA9DCHKlngWhnAnAlIaUUpRoFUsyaBZHQKlxN4iX6ZZ1fZQoaAZoCWgPQwhMi/okdxj9v5SGlFKUaBVLMmgWR0Cpc+hP0qYrdX2UKGgGaAloD0MIyv0ORYH+AMCUhpRSlGgVSzJoFkdAqXOr1oQFtHV9lChoBmgJaA9DCAIqHEEqBfq/lIaUUpRoFUsyaBZHQKlzbhXr+o91fZQoaAZoCWgPQwhxPJ8B9Wbtv5SGlFKUaBVLMmgWR0Cpcy7Gm1pkdX2UKGgGaAloD0MIdVWgFoOH+L+UhpRSlGgVSzJoFkdAqXXSkKu0TnV9lChoBmgJaA9DCNNsHofB/AbAlIaUUpRoFUsyaBZHQKl1lm+0w8J1fZQoaAZoCWgPQwhaETXR50MKwJSGlFKUaBVLMmgWR0CpdVjjzZpSdX2UKGgGaAloD0MI7rJfd7rzBMCUhpRSlGgVSzJoFkdAqXUZkI5YHXV9lChoBmgJaA9DCBuFJLN6B/C/lIaUUpRoFUsyaBZHQKl31jdYW+J1fZQoaAZoCWgPQwjxuRPsv87pv5SGlFKUaBVLMmgWR0Cpd5nF5v9+dX2UKGgGaAloD0MInprLDYYqEMCUhpRSlGgVSzJoFkdAqXdcKkVN6HV9lChoBmgJaA9DCK1rtBzoIfa/lIaUUpRoFUsyaBZHQKl3HHOryUd1fZQoaAZoCWgPQwiQ2Vn0TsX/v5SGlFKUaBVLMmgWR0CpehCGFi8WdX2UKGgGaAloD0MI8bkT7L8uCMCUhpRSlGgVSzJoFkdAqXnUTL4etHV9lChoBmgJaA9DCCMQr+sXjAPAlIaUUpRoFUsyaBZHQKl5lrrPdEd1fZQoaAZoCWgPQwippE5AE4EEwJSGlFKUaBVLMmgWR0CpeVe8PFvRdX2UKGgGaAloD0MIp5at9UVC9r+UhpRSlGgVSzJoFkdAqXwM1AJLNHV9lChoBmgJaA9DCO5brROXY/m/lIaUUpRoFUsyaBZHQKl70LVFx4p1fZQoaAZoCWgPQwi+F1+0x6sGwJSGlFKUaBVLMmgWR0Cpe5OYx+KCdX2UKGgGaAloD0MIoNy271F/+r+UhpRSlGgVSzJoFkdAqXtU3n6l+HV9lChoBmgJaA9DCK6ek943vv6/lIaUUpRoFUsyaBZHQKl9nT1CgK51fZQoaAZoCWgPQwiTN8DMd7D9v5SGlFKUaBVLMmgWR0CpfWARsdkrdX2UKGgGaAloD0MIkWEVb2SeDMCUhpRSlGgVSzJoFkdAqX0hrvb48HV9lChoBmgJaA9DCPWDukihLOW/lIaUUpRoFUsyaBZHQKl84XsPatd1fZQoaAZoCWgPQwguH0lJD+MLwJSGlFKUaBVLMmgWR0Cpft48uBczdX2UKGgGaAloD0MIyCO4kbJF/L+UhpRSlGgVSzJoFkdAqX6g+QlrunV9lChoBmgJaA9DCDGale1DXu6/lIaUUpRoFUsyaBZHQKl+Yr7O3Uh1fZQoaAZoCWgPQwiyZfm6DH/hv5SGlFKUaBVLMmgWR0CpfiKOcUdrdX2UKGgGaAloD0MI5V5gViiS+7+UhpRSlGgVSzJoFkdAqYAKhWYF7nV9lChoBmgJaA9DCHVVoBaDB/u/lIaUUpRoFUsyaBZHQKl/zUDuBtl1fZQoaAZoCWgPQwhS0sPQ6oQNwJSGlFKUaBVLMmgWR0Cpf462WpqAdX2UKGgGaAloD0MIxa7t7ZbkAMCUhpRSlGgVSzJoFkdAqX9OWv8qF3V9lChoBmgJaA9DCP0QGyyc5Pq/lIaUUpRoFUsyaBZHQKmBTN9ph4N1fZQoaAZoCWgPQwhKz/QSY5npv5SGlFKUaBVLMmgWR0CpgQ+aBqbjdX2UKGgGaAloD0MI6pPcYROZ9b+UhpRSlGgVSzJoFkdAqYDRHLA573V9lChoBmgJaA9DCHRcjexKSwHAlIaUUpRoFUsyaBZHQKmAkPFvQ4V1fZQoaAZoCWgPQwhPeAlOfWD3v5SGlFKUaBVLMmgWR0CpgnYcm0E6dX2UKGgGaAloD0MILbDHRErz9b+UhpRSlGgVSzJoFkdAqYI4vxpco3V9lChoBmgJaA9DCLgiMUENX/i/lIaUUpRoFUsyaBZHQKmB+jjaPCF1fZQoaAZoCWgPQwg4aoXpew36v5SGlFKUaBVLMmgWR0Cpgbn8jzI4dX2UKGgGaAloD0MI3NRA8zn3/r+UhpRSlGgVSzJoFkdAqYOaG8EmpnV9lChoBmgJaA9DCELr4ctE0fu/lIaUUpRoFUsyaBZHQKmDXKlHjId1fZQoaAZoCWgPQwi6hENv8dABwJSGlFKUaBVLMmgWR0Cpgx3zDn/2dX2UKGgGaAloD0MI3NRA8zm39b+UhpRSlGgVSzJoFkdAqYLdenhsInV9lChoBmgJaA9DCCuFQC5x5ADAlIaUUpRoFUsyaBZHQKmEs2TgVGl1fZQoaAZoCWgPQwhd/kP67UsEwJSGlFKUaBVLMmgWR0CphHYA0bcXdX2UKGgGaAloD0MIKzOl9bfE97+UhpRSlGgVSzJoFkdAqYQ3aWX1J3V9lChoBmgJaA9DCCMtlbcjvAHAlIaUUpRoFUsyaBZHQKmD9sWO6up1fZQoaAZoCWgPQwiFJLN6hzsRwJSGlFKUaBVLMmgWR0Cphh7iZOSGdX2UKGgGaAloD0MIucFQhxUu/b+UhpRSlGgVSzJoFkdAqYXhR0lqrXV9lChoBmgJaA9DCKBQTx+BXwXAlIaUUpRoFUsyaBZHQKmFo4tHxz91fZQoaAZoCWgPQwjso1NXPosBwJSGlFKUaBVLMmgWR0CphWP6TGHYdX2UKGgGaAloD0MI9mG9USvMCcCUhpRSlGgVSzJoFkdAqYdG/WUbDXV9lChoBmgJaA9DCDT3kPC9P++/lIaUUpRoFUsyaBZHQKmHCatLcsV1fZQoaAZoCWgPQwhG66hqgogOwJSGlFKUaBVLMmgWR0Cphsr+PzWgdX2UKGgGaAloD0MI8IY0KnDSC8CUhpRSlGgVSzJoFkdAqYaKunuRcXV9lChoBmgJaA9DCIrnbAGh9RDAlIaUUpRoFUsyaBZHQKmIXvegte51fZQoaAZoCWgPQwhmaafmcgPzv5SGlFKUaBVLMmgWR0CpiCF/hESedX2UKGgGaAloD0MIiSe7mdHPCsCUhpRSlGgVSzJoFkdAqYfi72+PBHV9lChoBmgJaA9DCOOMYU7QZvC/lIaUUpRoFUsyaBZHQKmHomKIi1R1fZQoaAZoCWgPQwgyc4HLY+0EwJSGlFKUaBVLMmgWR0CpiXuvMbFTdX2UKGgGaAloD0MI2bERiNf1/r+UhpRSlGgVSzJoFkdAqYk+AZsKs3V9lChoBmgJaA9DCJgUH5+QXfC/lIaUUpRoFUsyaBZHQKmI/zMA3kx1fZQoaAZoCWgPQwgwnkFD/2QEwJSGlFKUaBVLMmgWR0CpiL6wMYuTdX2UKGgGaAloD0MI1UDzOXcbCMCUhpRSlGgVSzJoFkdAqYqMep4r0HV9lChoBmgJaA9DCBprf2d7lAbAlIaUUpRoFUsyaBZHQKmKTyp71I11fZQoaAZoCWgPQwgomgewyC/8v5SGlFKUaBVLMmgWR0CpihBshxHYdX2UKGgGaAloD0MIx3+BIECG7r+UhpRSlGgVSzJoFkdAqYnPvUjLS3V9lChoBmgJaA9DCKW+LO3UHAbAlIaUUpRoFUsyaBZHQKmLoCkGiYd1fZQoaAZoCWgPQwhqGD4ipgT7v5SGlFKUaBVLMmgWR0Cpi2LJCBwudX2UKGgGaAloD0MIsBwhA3nWAsCUhpRSlGgVSzJoFkdAqYskLSeAeHV9lChoBmgJaA9DCGQ9tfrqSgPAlIaUUpRoFUsyaBZHQKmK4+M6zVt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1792ac35e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1792ac4500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681217332620792045, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwbLIPmQmrTxfngw/wbLIPmQmrTxfngw/wbLIPmQmrTxfngw/wbLIPmQmrTxfngw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATey6vwGUQr/T6ou/MhWBv7cN1D7oevA+DqzSP20aFb/Blpw/xmDEP/4SPj4pvii/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADBssg+ZCatPF+eDD/0DhO8MJuLunwLHzvBssg+ZCatPF+eDD/0DhO8MJuLunwLHzvBssg+ZCatPF+eDD/0DhO8MJuLunwLHzvBssg+ZCatPF+eDD/0DhO8MJuLunwLHzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.39198878 0.02113647 0.54929155]\n [0.39198878 0.02113647 0.54929155]\n [0.39198878 0.02113647 0.54929155]\n [0.39198878 0.02113647 0.54929155]]", "desired_goal": "[[-1.4603363 -0.76007086 -1.0931038 ]\n [-1.0084593 0.41416714 0.4696877 ]\n [ 1.6458757 -0.5824345 1.2233506 ]\n [ 1.5342033 0.18561932 -0.6591516 ]]", "observation": "[[ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]\n [ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]\n [ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]\n [ 0.39198878 0.02113647 0.54929155 -0.00897573 -0.00106511 0.00242683]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAG0faPR6bhjutX3U+D7PFPQSYBLwZI5Y+0bYWvQ7FAr3aEsE8ok1XvQ5tC76D+A0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10658094 0.00410785 0.23962279]\n [ 0.09653293 -0.00809288 0.29323652]\n [-0.03679544 -0.03192621 0.02356856]\n [-0.05256427 -0.1361582 0.13864331]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgsmNImvNAMCUhpRSlIwBbJRLMowBdJRHQLVpYpON5t51fZQoaAZoCWgPQwjUYvAw7VsGwJSGlFKUaBVLMmgWR0C1aTgq7ROUdX2UKGgGaAloD0MIHa9A9KTM+7+UhpRSlGgVSzJoFkdAtWkMdjoZAXV9lChoBmgJaA9DCEsDP6phfxHAlIaUUpRoFUsyaBZHQLVo4VhCtzV1fZQoaAZoCWgPQwjqA8k7h9ITwJSGlFKUaBVLMmgWR0C1adBgNPP+dX2UKGgGaAloD0MI6pJxjGTvBcCUhpRSlGgVSzJoFkdAtWmmIAOrhnV9lChoBmgJaA9DCLB2FOeogwXAlIaUUpRoFUsyaBZHQLVpemnwXqJ1fZQoaAZoCWgPQwjik04kmPoRwJSGlFKUaBVLMmgWR0C1aU9JOFg2dX2UKGgGaAloD0MIxsIQOX39BcCUhpRSlGgVSzJoFkdAtWpAFzMibHV9lChoBmgJaA9DCFiNJayNcQrAlIaUUpRoFUsyaBZHQLVqFaaTfSB1fZQoaAZoCWgPQwjiyAORRToFwJSGlFKUaBVLMmgWR0C1aeoSYgJUdX2UKGgGaAloD0MIpRMJppoZDcCUhpRSlGgVSzJoFkdAtWm+3VkMC3V9lChoBmgJaA9DCKcgPxu5DgLAlIaUUpRoFUsyaBZHQLVqr1m8M/h1fZQoaAZoCWgPQwipT3KHTYQHwJSGlFKUaBVLMmgWR0C1aoTlxOtXdX2UKGgGaAloD0MINuUK73LBEsCUhpRSlGgVSzJoFkdAtWpZNj9XLnV9lChoBmgJaA9DCAEUI0vm2AzAlIaUUpRoFUsyaBZHQLVqLikfs/p1fZQoaAZoCWgPQwjGFKxxNh0RwJSGlFKUaBVLMmgWR0C1axxxT850dX2UKGgGaAloD0MInkXvVMAdB8CUhpRSlGgVSzJoFkdAtWryAjIJaHV9lChoBmgJaA9DCN1AgXfyiQ3AlIaUUpRoFUsyaBZHQLVqxk8zQ/p1fZQoaAZoCWgPQwjO/kC5bV8FwJSGlFKUaBVLMmgWR0C1apsmfGuLdX2UKGgGaAloD0MIg4dp39z/BsCUhpRSlGgVSzJoFkdAtWvLJJXhfnV9lChoBmgJaA9DCDc2O1J9BwXAlIaUUpRoFUsyaBZHQLVroSjQAuJ1fZQoaAZoCWgPQwiSrS6nBOQDwJSGlFKUaBVLMmgWR0C1a3XE61b8dX2UKGgGaAloD0MIuatXkdGBAcCUhpRSlGgVSzJoFkdAtWtK6shgV3V9lChoBmgJaA9DCOaSqu0m+BDAlIaUUpRoFUsyaBZHQLVsfy0rsjV1fZQoaAZoCWgPQwh3EDtT6GwQwJSGlFKUaBVLMmgWR0C1bFUOuq3mdX2UKGgGaAloD0MItcNfkzWKDcCUhpRSlGgVSzJoFkdAtWwppDeCTXV9lChoBmgJaA9DCFsjgnFw6QLAlIaUUpRoFUsyaBZHQLVr/rDqGDd1fZQoaAZoCWgPQwh/UBcplEULwJSGlFKUaBVLMmgWR0C1bS8enyd4dX2UKGgGaAloD0MIexUZHZCEA8CUhpRSlGgVSzJoFkdAtW0E9wFTvXV9lChoBmgJaA9DCLQ7pBggEQTAlIaUUpRoFUsyaBZHQLVs2YL9deJ1fZQoaAZoCWgPQwhjuaXVkLgQwJSGlFKUaBVLMmgWR0C1bK6cNH6NdX2UKGgGaAloD0MI+g5+4gC6BMCUhpRSlGgVSzJoFkdAtW3iM72crnV9lChoBmgJaA9DCM2spYC0fwbAlIaUUpRoFUsyaBZHQLVtuFG5MDh1fZQoaAZoCWgPQwgfuwuUFJgPwJSGlFKUaBVLMmgWR0C1bY0BOpKjdX2UKGgGaAloD0MIbCIzF7gMEMCUhpRSlGgVSzJoFkdAtW1iGbkOqnV9lChoBmgJaA9DCCF3EaYoVxDAlIaUUpRoFUsyaBZHQLVulnZ00WN1fZQoaAZoCWgPQwj5vOKpR7oFwJSGlFKUaBVLMmgWR0C1bmxkd3jddX2UKGgGaAloD0MI8DMuHAhpCcCUhpRSlGgVSzJoFkdAtW5BEroW6HV9lChoBmgJaA9DCIeiQJ/IoxDAlIaUUpRoFUsyaBZHQLVuFid8Rcx1fZQoaAZoCWgPQwiwVYLF4QwFwJSGlFKUaBVLMmgWR0C1b0tehPCVdX2UKGgGaAloD0MIeAlOfSC5EMCUhpRSlGgVSzJoFkdAtW8hN34bj3V9lChoBmgJaA9DCDFdiNUfQQjAlIaUUpRoFUsyaBZHQLVu9eNDMNd1fZQoaAZoCWgPQwjzAuyjUzcGwJSGlFKUaBVLMmgWR0C1bssQEpy7dX2UKGgGaAloD0MI0lPkEHGTCcCUhpRSlGgVSzJoFkdAtXAGaG5+Y3V9lChoBmgJaA9DCCLH1jOEsxDAlIaUUpRoFUsyaBZHQLVv3EF4cFR1fZQoaAZoCWgPQwiwjXiym1kFwJSGlFKUaBVLMmgWR0C1b7ErGza9dX2UKGgGaAloD0MISwUVVb9yCcCUhpRSlGgVSzJoFkdAtW+GScLBsXV9lChoBmgJaA9DCBAk7xzKEAXAlIaUUpRoFUsyaBZHQLVwnkVN5+p1fZQoaAZoCWgPQwh7Mv/om0QTwJSGlFKUaBVLMmgWR0C1cHP/rB0qdX2UKGgGaAloD0MIa378pUUdEMCUhpRSlGgVSzJoFkdAtXBIXMyJsXV9lChoBmgJaA9DCChlUkMbIAjAlIaUUpRoFUsyaBZHQLVwHV3EAHV1fZQoaAZoCWgPQwirsBnggowTwJSGlFKUaBVLMmgWR0C1cQ1cdHUddX2UKGgGaAloD0MIXkpdMo7xEsCUhpRSlGgVSzJoFkdAtXDi9AX2unV9lChoBmgJaA9DCDYgQlw5KxHAlIaUUpRoFUsyaBZHQLVwt0NSZSh1fZQoaAZoCWgPQwiMnfASnHoJwJSGlFKUaBVLMmgWR0C1cIwfU4JedX2UKGgGaAloD0MIQukLIee9EsCUhpRSlGgVSzJoFkdAtXF/6XSjQHV9lChoBmgJaA9DCMxDpnwICgjAlIaUUpRoFUsyaBZHQLVxVaSLZSN1fZQoaAZoCWgPQwjmzHaFPjgDwJSGlFKUaBVLMmgWR0C1cSn/HYHxdX2UKGgGaAloD0MI4iNiSiRRB8CUhpRSlGgVSzJoFkdAtXD+2H+IdnV9lChoBmgJaA9DCJg1scBXVArAlIaUUpRoFUsyaBZHQLVx81EVnEl1fZQoaAZoCWgPQwghsHJokU0MwJSGlFKUaBVLMmgWR0C1ccjvZyuIdX2UKGgGaAloD0MIhiAHJcx0CsCUhpRSlGgVSzJoFkdAtXGdOclPanV9lChoBmgJaA9DCGjMJOoFfwfAlIaUUpRoFUsyaBZHQLVxciRGMGZ1fZQoaAZoCWgPQwjU8C2sG88CwJSGlFKUaBVLMmgWR0C1cmOIInjRdX2UKGgGaAloD0MIQdR9AFJbC8CUhpRSlGgVSzJoFkdAtXI5I+W4VnV9lChoBmgJaA9DCKSoM/eQMAvAlIaUUpRoFUsyaBZHQLVyDXu3MIN1fZQoaAZoCWgPQwjWHvZCATsKwJSGlFKUaBVLMmgWR0C1ceJ2U0N0dX2UKGgGaAloD0MIyxRzEHSUDcCUhpRSlGgVSzJoFkdAtXLWknCwbHV9lChoBmgJaA9DCD52FygpEArAlIaUUpRoFUsyaBZHQLVyrDXe3x51fZQoaAZoCWgPQwiAngYMkj4JwJSGlFKUaBVLMmgWR0C1coCQHRkVdX2UKGgGaAloD0MISOAPP//9A8CUhpRSlGgVSzJoFkdAtXJVgVoHs3V9lChoBmgJaA9DCH8yxofZKw7AlIaUUpRoFUsyaBZHQLVzRiS7oSt1fZQoaAZoCWgPQwgj88gfDGwQwJSGlFKUaBVLMmgWR0C1cxvDtPYWdX2UKGgGaAloD0MIiIIZU7BGCMCUhpRSlGgVSzJoFkdAtXLwIY3vQXV9lChoBmgJaA9DCATidf2CfQPAlIaUUpRoFUsyaBZHQLVyxPfKp1l1fZQoaAZoCWgPQwhWtg95y7UKwJSGlFKUaBVLMmgWR0C1c70yYXwcdX2UKGgGaAloD0MIRX9o5sn1AsCUhpRSlGgVSzJoFkdAtXOS94/u9nV9lChoBmgJaA9DCH6nyYy3RRLAlIaUUpRoFUsyaBZHQLVzZ0mtyPx1fZQoaAZoCWgPQwjhJM0f09oFwJSGlFKUaBVLMmgWR0C1czwevIOpdX2UKGgGaAloD0MIdGA5QgYSBcCUhpRSlGgVSzJoFkdAtXQvYsd1dXV9lChoBmgJaA9DCBQhdTv7ygnAlIaUUpRoFUsyaBZHQLV0BRMvh611fZQoaAZoCWgPQwi0WIrkKwELwJSGlFKUaBVLMmgWR0C1c9lfNRm9dX2UKGgGaAloD0MIHAx1WOF2DMCUhpRSlGgVSzJoFkdAtXOuRq46O3V9lChoBmgJaA9DCCl2NA71GwfAlIaUUpRoFUsyaBZHQLV0n1twaR91fZQoaAZoCWgPQwjp8Xub/nwRwJSGlFKUaBVLMmgWR0C1dHUaAFxGdX2UKGgGaAloD0MIdA0zNJ6oCsCUhpRSlGgVSzJoFkdAtXRJhUipvXV9lChoBmgJaA9DCAQeGED4UAPAlIaUUpRoFUsyaBZHQLV0Hnyup0h1fZQoaAZoCWgPQwgHswkwLJ8KwJSGlFKUaBVLMmgWR0C1dQ7TH80ldX2UKGgGaAloD0MIrU7OUNyRB8CUhpRSlGgVSzJoFkdAtXTkaWHDaXV9lChoBmgJaA9DCA72JobkhBLAlIaUUpRoFUsyaBZHQLV0uNOuaF51fZQoaAZoCWgPQwhDq5MzFNcCwJSGlFKUaBVLMmgWR0C1dI2tdRixdX2UKGgGaAloD0MIcvkP6bcPEMCUhpRSlGgVSzJoFkdAtXV+K77KrHV9lChoBmgJaA9DCHDP86eN2hHAlIaUUpRoFUsyaBZHQLV1U7ojfN11fZQoaAZoCWgPQwhMM93rpI4QwJSGlFKUaBVLMmgWR0C1dSf9P1tgdX2UKGgGaAloD0MIQ1N2+kGdC8CUhpRSlGgVSzJoFkdAtXT8xgy/K3V9lChoBmgJaA9DCGggls0csgnAlIaUUpRoFUsyaBZHQLV17DdP+GZ1fZQoaAZoCWgPQwikq3R3nU0DwJSGlFKUaBVLMmgWR0C1dcHGXHBDdX2UKGgGaAloD0MI2ubG9ITFBsCUhpRSlGgVSzJoFkdAtXWWDYh+v3V9lChoBmgJaA9DCGQhOgSO5ArAlIaUUpRoFUsyaBZHQLV1atZFG5N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -3.3268133809790017, "std_reward": 0.7495008845566429, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-11T14:23:47.729422"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa7e6423bf9961a1438d781c5efa1e3133a004412cfe7234308204eca7273038
|
3 |
+
size 2381
|