|
|
|
|
|
|
|
|
|
import argparse
|
|
import gc
|
|
import json
|
|
import math
|
|
import os
|
|
import shutil
|
|
import warnings
|
|
from collections import defaultdict
|
|
from copy import deepcopy
|
|
from fractions import Fraction
|
|
from functools import partial
|
|
from pathlib import Path
|
|
from pprint import pprint
|
|
from random import Random
|
|
from typing import BinaryIO, Literal, Optional, Union
|
|
|
|
import numpy as np
|
|
import pyworld
|
|
import torch
|
|
import torch.nn as nn
|
|
import torchaudio
|
|
from torch.nn import functional as F
|
|
from torch.nn.utils import remove_weight_norm, weight_norm
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from tqdm.auto import tqdm
|
|
|
|
assert "soundfile" in torchaudio.list_audio_backends()
|
|
|
|
|
|
|
|
PARAPHERNALIA_VERSION = "2.0.0-alpha.2"
|
|
|
|
|
|
def is_notebook() -> bool:
|
|
return "get_ipython" in globals()
|
|
|
|
|
|
def repo_root() -> Path:
|
|
d = Path.cwd() / "dummy" if is_notebook() else Path(__file__)
|
|
assert d.is_absolute(), d
|
|
for d in d.parents:
|
|
if (d / ".git").is_dir():
|
|
return d
|
|
raise RuntimeError("Repository root is not found.")
|
|
|
|
|
|
|
|
|
|
dict_default_hparams = {
|
|
|
|
"learning_rate": 1e-4,
|
|
"min_learning_rate": 5e-6,
|
|
"adam_betas": [0.8, 0.99],
|
|
"adam_eps": 1e-6,
|
|
"batch_size": 8,
|
|
"grad_weight_mel": 1.0,
|
|
"grad_weight_adv": 1.0,
|
|
"grad_weight_fm": 1.0,
|
|
"grad_balancer_ema_decay": 0.995,
|
|
"use_amp": True,
|
|
"num_workers": 16,
|
|
"n_steps": 20000,
|
|
"warmup_steps": 10000,
|
|
"in_sample_rate": 16000,
|
|
"out_sample_rate": 24000,
|
|
"wav_length": 4 * 24000,
|
|
"segment_length": 100,
|
|
|
|
"phone_extractor_file": "assets/pretrained/003b_checkpoint_03000000.pt",
|
|
"pitch_estimator_file": "assets/pretrained/008_1_checkpoint_00300000.pt",
|
|
"in_ir_wav_dir": "assets/ir",
|
|
"in_noise_wav_dir": "assets/noise",
|
|
"in_test_wav_dir": "assets/test",
|
|
"pretrained_file": "assets/pretrained/040c_checkpoint_libritts_r_200_02300000.pt",
|
|
|
|
"hidden_channels": 256,
|
|
"san": False,
|
|
}
|
|
|
|
if __name__ == "__main__":
|
|
|
|
default_config_file = repo_root() / "assets/default_config.json"
|
|
if default_config_file.is_file():
|
|
with open(default_config_file, encoding="utf-8") as f:
|
|
default_config: dict = json.load(f)
|
|
for key, value in dict_default_hparams.items():
|
|
if key not in default_config:
|
|
warnings.warn(f"{key} not found in default_config.json.")
|
|
else:
|
|
if value != default_config[key]:
|
|
warnings.warn(
|
|
f"{key} differs between default_config.json ({default_config[key]}) and internal default hparams ({value})."
|
|
)
|
|
del default_config[key]
|
|
for key in default_config:
|
|
warnings.warn(f"{key} found in default_config.json is unknown.")
|
|
else:
|
|
warnings.warn("dafualt_config.json not found.")
|
|
|
|
|
|
def prepare_training_configs_for_experiment() -> tuple[dict, Path, Path, bool]:
|
|
import ipynbname
|
|
from IPython import get_ipython
|
|
|
|
h = deepcopy(dict_default_hparams)
|
|
in_wav_dataset_dir = repo_root() / "../../data/processed/libritts_r_200"
|
|
try:
|
|
notebook_name = ipynbname.name()
|
|
except FileNotFoundError:
|
|
notebook_name = Path(get_ipython().user_ns["__vsc_ipynb_file__"]).name
|
|
out_dir = repo_root() / "notebooks" / notebook_name.split(".")[0].split("_")[0]
|
|
resume = False
|
|
return h, in_wav_dataset_dir, out_dir, resume
|
|
|
|
|
|
def prepare_training_configs() -> tuple[dict, Path, Path, bool]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("-d", "--data_dir", type=Path, help="directory containing the training data")
|
|
parser.add_argument("-o", "--out_dir", type=Path, help="output directory")
|
|
parser.add_argument("-r", "--resume", action="store_true", help="resume training")
|
|
parser.add_argument("-c", "--config", type=Path, help="path to the config file")
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
if args.config is None:
|
|
h = deepcopy(dict_default_hparams)
|
|
else:
|
|
with open(args.config, encoding="utf-8") as f:
|
|
h = json.load(f)
|
|
for key in dict_default_hparams.keys():
|
|
if key not in h:
|
|
h[key] = dict_default_hparams[key]
|
|
warnings.warn(
|
|
f"{key} is not specified in the config file. Using the default value."
|
|
)
|
|
|
|
if args.data_dir is not None:
|
|
in_wav_dataset_dir = args.data_dir
|
|
elif "data_dir" in h:
|
|
in_wav_dataset_dir = repo_root() / Path(h["data_dir"])
|
|
del h["data_dir"]
|
|
else:
|
|
raise ValueError(
|
|
"data_dir must be specified. "
|
|
"For example `python3 beatrice_trainer -d my_training_data_dir -o my_output_dir`."
|
|
)
|
|
|
|
if args.out_dir is not None:
|
|
out_dir = args.out_dir
|
|
elif "out_dir" in h:
|
|
out_dir = repo_root() / Path(h["out_dir"])
|
|
del h["out_dir"]
|
|
else:
|
|
raise ValueError(
|
|
"out_dir must be specified. "
|
|
"For example `python3 beatrice_trainer -d my_training_data_dir -o my_output_dir`."
|
|
)
|
|
for key in list(h.keys()):
|
|
if key not in dict_default_hparams:
|
|
warnings.warn(f"`{key}` specified in the config file will be ignored.")
|
|
del h[key]
|
|
|
|
resume = args.resume
|
|
return h, in_wav_dataset_dir, out_dir, resume
|
|
|
|
|
|
class AttrDict(dict):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.__dict__ = self
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dump_params(params: torch.Tensor, f: BinaryIO):
|
|
if params is None:
|
|
return
|
|
if params.dtype == torch.bfloat16:
|
|
f.write(
|
|
params.detach()
|
|
.clone()
|
|
.float()
|
|
.view(torch.short)
|
|
.numpy()
|
|
.ravel()[1::2]
|
|
.tobytes()
|
|
)
|
|
else:
|
|
f.write(params.detach().numpy().ravel().tobytes())
|
|
f.flush()
|
|
|
|
|
|
def dump_layer(layer: nn.Module, f: BinaryIO):
|
|
dump = partial(dump_params, f=f)
|
|
if hasattr(layer, "dump"):
|
|
layer.dump(f)
|
|
elif isinstance(layer, (nn.Linear, nn.Conv1d, nn.LayerNorm)):
|
|
dump(layer.weight)
|
|
dump(layer.bias)
|
|
elif isinstance(layer, nn.ConvTranspose1d):
|
|
dump(layer.weight.transpose(0, 1))
|
|
dump(layer.bias)
|
|
elif isinstance(layer, nn.GRU):
|
|
dump(layer.weight_ih_l0)
|
|
dump(layer.bias_ih_l0)
|
|
dump(layer.weight_hh_l0)
|
|
dump(layer.bias_hh_l0)
|
|
for i in range(1, 99999):
|
|
if not hasattr(layer, f"weight_ih_l{i}"):
|
|
break
|
|
dump(getattr(layer, f"weight_ih_l{i}"))
|
|
dump(getattr(layer, f"bias_ih_l{i}"))
|
|
dump(getattr(layer, f"weight_hh_l{i}"))
|
|
dump(getattr(layer, f"bias_hh_l{i}"))
|
|
elif isinstance(layer, nn.Embedding):
|
|
dump(layer.weight)
|
|
elif isinstance(layer, nn.ModuleList):
|
|
for l in layer:
|
|
dump_layer(l, f)
|
|
else:
|
|
assert False, layer
|
|
|
|
|
|
class CausalConv1d(nn.Conv1d):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
kernel_size: int,
|
|
stride: int = 1,
|
|
dilation: int = 1,
|
|
groups: int = 1,
|
|
bias: bool = True,
|
|
delay: int = 0,
|
|
):
|
|
padding = (kernel_size - 1) * dilation - delay
|
|
self.trim = (kernel_size - 1) * dilation - 2 * delay
|
|
if self.trim < 0:
|
|
raise ValueError
|
|
super().__init__(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
bias=bias,
|
|
)
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
result = super().forward(input)
|
|
if self.trim == 0:
|
|
return result
|
|
else:
|
|
return result[:, :, : -self.trim]
|
|
|
|
|
|
class ConvNeXtBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
intermediate_channels: int,
|
|
layer_scale_init_value: float,
|
|
kernel_size: int = 7,
|
|
use_weight_norm: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.use_weight_norm = use_weight_norm
|
|
self.dwconv = CausalConv1d(
|
|
channels, channels, kernel_size=kernel_size, groups=channels
|
|
)
|
|
self.norm = nn.LayerNorm(channels)
|
|
self.pwconv1 = nn.Linear(channels, intermediate_channels)
|
|
self.pwconv2 = nn.Linear(intermediate_channels, channels)
|
|
self.gamma = nn.Parameter(torch.full((channels,), layer_scale_init_value))
|
|
if use_weight_norm:
|
|
self.norm = nn.Identity()
|
|
self.dwconv = weight_norm(self.dwconv)
|
|
self.pwconv1 = weight_norm(self.pwconv1)
|
|
self.pwconv2 = weight_norm(self.pwconv2)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
identity = x
|
|
x = self.dwconv(x)
|
|
x = x.transpose(1, 2)
|
|
x = self.norm(x)
|
|
x = self.pwconv1(x)
|
|
x = F.gelu(x, approximate="tanh")
|
|
x = self.pwconv2(x)
|
|
x *= self.gamma
|
|
x = x.transpose(1, 2)
|
|
x += identity
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
if self.use_weight_norm:
|
|
remove_weight_norm(self.dwconv)
|
|
remove_weight_norm(self.pwconv1)
|
|
remove_weight_norm(self.pwconv2)
|
|
|
|
def merge_weights(self):
|
|
if not self.use_weight_norm:
|
|
self.pwconv1.bias.data += (
|
|
self.norm.bias.data[None, :] * self.pwconv1.weight.data
|
|
).sum(1)
|
|
self.pwconv1.weight.data *= self.norm.weight.data[None, :]
|
|
self.norm.bias.data[:] = 0.0
|
|
self.norm.weight.data[:] = 1.0
|
|
self.pwconv2.weight.data *= self.gamma.data[:, None]
|
|
self.pwconv2.bias.data *= self.gamma.data
|
|
self.gamma.data[:] = 1.0
|
|
|
|
def dump(self, f: Union[BinaryIO, str, bytes, os.PathLike]):
|
|
if isinstance(f, (str, bytes, os.PathLike)):
|
|
with open(f, "wb") as f:
|
|
self.dump(f)
|
|
return
|
|
if not hasattr(f, "write"):
|
|
raise TypeError
|
|
|
|
dump_layer(self.dwconv, f)
|
|
dump_layer(self.pwconv1, f)
|
|
dump_layer(self.pwconv2, f)
|
|
|
|
|
|
class ConvNeXtStack(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
channels: int,
|
|
intermediate_channels: int,
|
|
n_blocks: int,
|
|
delay: int,
|
|
embed_kernel_size: int,
|
|
kernel_size: int,
|
|
use_weight_norm: bool = False,
|
|
):
|
|
super().__init__()
|
|
assert delay * 2 + 1 <= embed_kernel_size
|
|
self.use_weight_norm = use_weight_norm
|
|
self.embed = CausalConv1d(in_channels, channels, embed_kernel_size, delay=delay)
|
|
self.norm = nn.LayerNorm(channels)
|
|
self.convnext = nn.ModuleList(
|
|
[
|
|
ConvNeXtBlock(
|
|
channels=channels,
|
|
intermediate_channels=intermediate_channels,
|
|
layer_scale_init_value=1.0 / n_blocks,
|
|
kernel_size=kernel_size,
|
|
use_weight_norm=use_weight_norm,
|
|
)
|
|
for _ in range(n_blocks)
|
|
]
|
|
)
|
|
self.final_layer_norm = nn.LayerNorm(channels)
|
|
if use_weight_norm:
|
|
self.embed = weight_norm(self.embed)
|
|
self.norm = nn.Identity()
|
|
self.final_layer_norm = nn.Identity()
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, (nn.Conv1d, nn.Linear)):
|
|
nn.init.trunc_normal_(m.weight, std=0.02)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.embed(x)
|
|
x = self.norm(x.transpose(1, 2)).transpose(1, 2)
|
|
for conv_block in self.convnext:
|
|
x = conv_block(x)
|
|
x = self.final_layer_norm(x.transpose(1, 2)).transpose(1, 2)
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
if self.use_weight_norm:
|
|
remove_weight_norm(self.embed)
|
|
for conv_block in self.convnext:
|
|
conv_block.remove_weight_norm()
|
|
|
|
def merge_weights(self):
|
|
for conv_block in self.convnext:
|
|
conv_block.merge_weights()
|
|
|
|
def dump(self, f: Union[BinaryIO, str, bytes, os.PathLike]):
|
|
if isinstance(f, (str, bytes, os.PathLike)):
|
|
with open(f, "wb") as f:
|
|
self.dump(f)
|
|
return
|
|
if not hasattr(f, "write"):
|
|
raise TypeError
|
|
|
|
dump_layer(self.embed, f)
|
|
if not self.use_weight_norm:
|
|
dump_layer(self.norm, f)
|
|
dump_layer(self.convnext, f)
|
|
if not self.use_weight_norm:
|
|
dump_layer(self.final_layer_norm, f)
|
|
|
|
|
|
class FeatureExtractor(nn.Module):
|
|
def __init__(self, hidden_channels: int):
|
|
super().__init__()
|
|
|
|
self.conv0 = weight_norm(nn.Conv1d(1, hidden_channels // 8, 10, 5, bias=False))
|
|
self.conv1 = weight_norm(nn.Conv1d(hidden_channels // 8, hidden_channels // 4, 3, 2, bias=False))
|
|
self.conv2 = weight_norm(nn.Conv1d(hidden_channels // 4, hidden_channels // 2, 3, 2, bias=False))
|
|
self.conv3 = weight_norm(nn.Conv1d(hidden_channels // 2, hidden_channels, 3, 2, bias=False))
|
|
self.conv4 = weight_norm(nn.Conv1d(hidden_channels, hidden_channels, 3, 2, bias=False))
|
|
self.conv5 = weight_norm(nn.Conv1d(hidden_channels, hidden_channels, 2, 2, bias=False))
|
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
wav_length = x.size(2)
|
|
if wav_length % 160 != 0:
|
|
warnings.warn("wav_length % 160 != 0")
|
|
x = F.pad(x, (40, 40))
|
|
x = F.gelu(self.conv0(x), approximate="tanh")
|
|
x = F.gelu(self.conv1(x), approximate="tanh")
|
|
x = F.gelu(self.conv2(x), approximate="tanh")
|
|
x = F.gelu(self.conv3(x), approximate="tanh")
|
|
x = F.gelu(self.conv4(x), approximate="tanh")
|
|
x = F.gelu(self.conv5(x), approximate="tanh")
|
|
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
remove_weight_norm(self.conv0)
|
|
remove_weight_norm(self.conv1)
|
|
remove_weight_norm(self.conv2)
|
|
remove_weight_norm(self.conv3)
|
|
remove_weight_norm(self.conv4)
|
|
remove_weight_norm(self.conv5)
|
|
|
|
def dump(self, f: Union[BinaryIO, str, bytes, os.PathLike]):
|
|
if isinstance(f, (str, bytes, os.PathLike)):
|
|
with open(f, "wb") as f:
|
|
self.dump(f)
|
|
return
|
|
if not hasattr(f, "write"):
|
|
raise TypeError
|
|
|
|
dump_layer(self.conv0, f)
|
|
dump_layer(self.conv1, f)
|
|
dump_layer(self.conv2, f)
|
|
dump_layer(self.conv3, f)
|
|
dump_layer(self.conv4, f)
|
|
dump_layer(self.conv5, f)
|
|
|
|
|
|
class FeatureProjection(nn.Module):
|
|
def __init__(self, in_channels: int, out_channels: int):
|
|
super().__init__()
|
|
self.norm = nn.LayerNorm(in_channels)
|
|
self.projection = nn.Conv1d(in_channels, out_channels, 1)
|
|
self.dropout = nn.Dropout(0.1)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
x = self.norm(x.transpose(1, 2)).transpose(1, 2)
|
|
x = self.projection(x)
|
|
x = self.dropout(x)
|
|
return x
|
|
|
|
def merge_weights(self):
|
|
self.projection.bias.data += (
|
|
(self.norm.bias.data[None, :, None] * self.projection.weight.data)
|
|
.sum(1)
|
|
.squeeze(1)
|
|
)
|
|
self.projection.weight.data *= self.norm.weight.data[None, :, None]
|
|
self.norm.bias.data[:] = 0.0
|
|
self.norm.weight.data[:] = 1.0
|
|
|
|
def dump(self, f: Union[BinaryIO, str, bytes, os.PathLike]):
|
|
if isinstance(f, (str, bytes, os.PathLike)):
|
|
with open(f, "wb") as f:
|
|
self.dump(f)
|
|
return
|
|
if not hasattr(f, "write"):
|
|
raise TypeError
|
|
|
|
dump_layer(self.projection, f)
|
|
|
|
|
|
class PhoneExtractor(nn.Module):
|
|
def __init__(
|
|
self,
|
|
phone_channels: int = 256,
|
|
hidden_channels: int = 256,
|
|
backbone_embed_kernel_size: int = 7,
|
|
kernel_size: int = 17,
|
|
n_blocks: int = 8,
|
|
):
|
|
super().__init__()
|
|
self.feature_extractor = FeatureExtractor(hidden_channels)
|
|
self.feature_projection = FeatureProjection(hidden_channels, hidden_channels)
|
|
self.n_speaker_encoder_layers = 3
|
|
self.speaker_encoder = nn.GRU(
|
|
hidden_channels,
|
|
hidden_channels,
|
|
self.n_speaker_encoder_layers,
|
|
batch_first=True,
|
|
)
|
|
for i in range(self.n_speaker_encoder_layers):
|
|
for input_char in "ih":
|
|
self.speaker_encoder = weight_norm(
|
|
self.speaker_encoder, f"weight_{input_char}h_l{i}"
|
|
)
|
|
self.backbone = ConvNeXtStack(
|
|
in_channels=hidden_channels,
|
|
channels=hidden_channels,
|
|
intermediate_channels=hidden_channels * 3,
|
|
n_blocks=n_blocks,
|
|
delay=0,
|
|
embed_kernel_size=backbone_embed_kernel_size,
|
|
kernel_size=kernel_size,
|
|
)
|
|
self.head = weight_norm(nn.Conv1d(hidden_channels, phone_channels, 1))
|
|
|
|
def forward(
|
|
self, x: torch.Tensor, return_stats: bool = True
|
|
) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, float]]]:
|
|
|
|
|
|
stats = {}
|
|
|
|
|
|
x = self.feature_extractor(x)
|
|
if return_stats:
|
|
stats["feature_norm"] = x.detach().norm(dim=1).mean()
|
|
|
|
x = self.feature_projection(x)
|
|
|
|
g, _ = self.speaker_encoder(x.transpose(1, 2))
|
|
if self.training:
|
|
batch_size, length, _ = g.size()
|
|
shuffle_sizes_for_each_data = torch.randint(
|
|
0, 50, (batch_size,), device=g.device
|
|
)
|
|
max_indices = torch.arange(length, device=g.device)[None, :, None]
|
|
min_indices = (
|
|
max_indices - shuffle_sizes_for_each_data[:, None, None]
|
|
).clamp_(min=0)
|
|
with torch.cuda.amp.autocast(False):
|
|
indices = (
|
|
torch.rand(g.size(), device=g.device)
|
|
* (max_indices - min_indices + 1)
|
|
).long() + min_indices
|
|
assert indices.min() >= 0, indices.min()
|
|
assert indices.max() < length, (indices.max(), length)
|
|
g = g.gather(1, indices)
|
|
|
|
|
|
g = g.transpose(1, 2).contiguous()
|
|
|
|
x = self.backbone(x + g)
|
|
|
|
phone = self.head(F.gelu(x, approximate="tanh"))
|
|
|
|
results = [phone]
|
|
if return_stats:
|
|
stats["code_norm"] = phone.detach().norm(dim=1).mean().item()
|
|
results.append(stats)
|
|
|
|
if len(results) == 1:
|
|
return results[0]
|
|
return tuple(results)
|
|
|
|
@torch.inference_mode()
|
|
def units(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
|
|
|
phone = self.forward(x, return_stats=False)
|
|
|
|
phone = phone.transpose(1, 2)
|
|
|
|
return phone
|
|
|
|
def remove_weight_norm(self):
|
|
self.feature_extractor.remove_weight_norm()
|
|
for i in range(self.n_speaker_encoder_layers):
|
|
for input_char in "ih":
|
|
remove_weight_norm(self.speaker_encoder, f"weight_{input_char}h_l{i}")
|
|
remove_weight_norm(self.head)
|
|
|
|
def merge_weights(self):
|
|
self.feature_projection.merge_weights()
|
|
self.backbone.merge_weights()
|
|
|
|
def dump(self, f: Union[BinaryIO, str, bytes, os.PathLike]):
|
|
if isinstance(f, (str, bytes, os.PathLike)):
|
|
with open(f, "wb") as f:
|
|
self.dump(f)
|
|
return
|
|
if not hasattr(f, "write"):
|
|
raise TypeError
|
|
|
|
dump_layer(self.feature_extractor, f)
|
|
dump_layer(self.feature_projection, f)
|
|
dump_layer(self.speaker_encoder, f)
|
|
dump_layer(self.backbone, f)
|
|
dump_layer(self.head, f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_pitch_features(
|
|
y: torch.Tensor,
|
|
hop_length: int = 160,
|
|
win_length: int = 560,
|
|
max_corr_period: int = 256,
|
|
corr_win_length: int = 304,
|
|
instfreq_features_cutoff_bin: int = 64,
|
|
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
assert max_corr_period + corr_win_length == win_length
|
|
|
|
|
|
padding_length = (win_length - hop_length) // 2
|
|
y = F.pad(y, (padding_length, padding_length))
|
|
|
|
|
|
|
|
y_frames = y.unfold(-1, win_length, hop_length).transpose_(-2, -1)
|
|
|
|
|
|
|
|
spec: torch.Tensor = torch.fft.rfft(y_frames, n=win_length, dim=-2)
|
|
|
|
|
|
spec = spec[..., :instfreq_features_cutoff_bin, :]
|
|
|
|
|
|
log_power_spec = spec.abs().add_(1e-5).log10_()
|
|
|
|
|
|
|
|
delta_spec = spec[..., :, 1:] * spec[..., :, :-1].conj()
|
|
delta_spec /= delta_spec.abs().add_(1e-5)
|
|
delta_spec = torch.cat(
|
|
[torch.zeros_like(delta_spec[..., :, :1]), delta_spec], dim=-1
|
|
)
|
|
|
|
|
|
instfreq_features = torch.cat(
|
|
[log_power_spec, delta_spec.real, delta_spec.imag], dim=-2
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flipped_y_frames = y_frames.flip((-2,))
|
|
a = torch.fft.rfft(flipped_y_frames, n=win_length, dim=-2)
|
|
b = torch.fft.rfft(y_frames[..., -corr_win_length:, :], n=win_length, dim=-2)
|
|
|
|
corr = torch.fft.irfft(a * b, n=win_length, dim=-2)[..., corr_win_length:, :]
|
|
|
|
|
|
energy = flipped_y_frames.square_().cumsum_(-2)
|
|
energy0 = energy[..., corr_win_length - 1 : corr_win_length, :]
|
|
energy = energy[..., corr_win_length:, :] - energy[..., :-corr_win_length, :]
|
|
|
|
|
|
corr_diff = (energy0 + energy).sub_(corr.mul_(2.0))
|
|
assert corr_diff.min() >= -1e-3, corr_diff.min()
|
|
corr_diff.clamp_(min=0.0)
|
|
|
|
|
|
corr_diff *= 2.0 / corr_win_length
|
|
corr_diff.sqrt_()
|
|
|
|
|
|
energy = (
|
|
y_frames.mul_(
|
|
torch.signal.windows.cosine(win_length, device=y.device)[..., None]
|
|
)
|
|
.square_()
|
|
.sum(-2, keepdim=True)
|
|
)
|
|
|
|
energy.clamp_(min=1e-3).log10_()
|
|
energy *= 0.5
|
|
|
|
return (
|
|
instfreq_features,
|
|
corr_diff,
|
|
energy,
|
|
)
|
|
|
|
|
|
class PitchEstimator(nn.Module):
|
|
def __init__(
|
|
self,
|
|
input_instfreq_channels: int = 192,
|
|
input_corr_channels: int = 256,
|
|
pitch_channels: int = 384,
|
|
channels: int = 192,
|
|
intermediate_channels: int = 192 * 3,
|
|
n_blocks: int = 6,
|
|
delay: int = 1,
|
|
embed_kernel_size: int = 3,
|
|
kernel_size: int = 33,
|
|
bins_per_octave: int = 96,
|
|
):
|
|
super().__init__()
|
|
self.bins_per_octave = bins_per_octave
|
|
|
|
self.instfreq_embed_0 = nn.Conv1d(input_instfreq_channels, channels, 1)
|
|
self.instfreq_embed_1 = nn.Conv1d(channels, channels, 1)
|
|
self.corr_embed_0 = nn.Conv1d(input_corr_channels, channels, 1)
|
|
self.corr_embed_1 = nn.Conv1d(channels, channels, 1)
|
|
self.backbone = ConvNeXtStack(
|
|
channels,
|
|
channels,
|
|
intermediate_channels,
|
|
n_blocks,
|
|
delay,
|
|
embed_kernel_size,
|
|
kernel_size,
|
|
)
|
|
self.head = nn.Conv1d(channels, pitch_channels, 1)
|
|
|
|
def forward(self, wav: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
|
|
|
|
|
|
with torch.cuda.amp.autocast(False):
|
|
instfreq_features, corr_diff, energy = extract_pitch_features(
|
|
wav.squeeze(1),
|
|
hop_length=160,
|
|
win_length=560,
|
|
max_corr_period=256,
|
|
corr_win_length=304,
|
|
instfreq_features_cutoff_bin=64,
|
|
)
|
|
instfreq_features = F.gelu(
|
|
self.instfreq_embed_0(instfreq_features), approximate="tanh"
|
|
)
|
|
instfreq_features = self.instfreq_embed_1(instfreq_features)
|
|
corr_diff = F.gelu(self.corr_embed_0(corr_diff), approximate="tanh")
|
|
corr_diff = self.corr_embed_1(corr_diff)
|
|
|
|
x = instfreq_features + corr_diff
|
|
x = self.backbone(x)
|
|
|
|
x = self.head(x)
|
|
return x, energy
|
|
|
|
def sample_pitch(
|
|
self, pitch: torch.Tensor, band_width: int = 48, return_features: bool = False
|
|
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
|
|
|
|
|
batch_size, pitch_channels, length = pitch.size()
|
|
pitch = pitch.softmax(1)
|
|
if return_features:
|
|
unvoiced_proba = pitch[:, :1, :].clone()
|
|
pitch[:, 0, :] = -100.0
|
|
pitch = (
|
|
pitch.transpose(1, 2)
|
|
.contiguous()
|
|
.view(batch_size * length, 1, pitch_channels)
|
|
)
|
|
band_pitch = F.conv1d(
|
|
pitch,
|
|
torch.ones((1, 1, 1), device=pitch.device).expand(1, 1, band_width),
|
|
)
|
|
|
|
quantized_band_pitch = band_pitch.argmax(2)
|
|
if return_features:
|
|
|
|
band_proba = band_pitch.gather(2, quantized_band_pitch[:, :, None])
|
|
|
|
half_pitch_band_proba = band_pitch.gather(
|
|
2,
|
|
(quantized_band_pitch - self.bins_per_octave).clamp_(min=1)[:, :, None],
|
|
)
|
|
half_pitch_band_proba[quantized_band_pitch <= self.bins_per_octave] = 0.0
|
|
half_pitch_proba = (half_pitch_band_proba / (band_proba + 1e-6)).view(
|
|
batch_size, 1, length
|
|
)
|
|
|
|
double_pitch_band_proba = band_pitch.gather(
|
|
2,
|
|
(quantized_band_pitch + self.bins_per_octave).clamp_(
|
|
max=pitch_channels - band_width
|
|
)[:, :, None],
|
|
)
|
|
double_pitch_band_proba[
|
|
quantized_band_pitch
|
|
> pitch_channels - band_width - self.bins_per_octave
|
|
] = 0.0
|
|
double_pitch_proba = (double_pitch_band_proba / (band_proba + 1e-6)).view(
|
|
batch_size, 1, length
|
|
)
|
|
|
|
mask = torch.arange(pitch_channels, device=pitch.device)[None, :]
|
|
|
|
mask = (quantized_band_pitch <= mask) & (
|
|
mask < quantized_band_pitch + band_width
|
|
)
|
|
|
|
quantized_pitch = (pitch.squeeze(1) * mask).argmax(1).view(batch_size, length)
|
|
|
|
if return_features:
|
|
features = torch.cat(
|
|
[unvoiced_proba, half_pitch_proba, double_pitch_proba], dim=1
|
|
)
|
|
|
|
return quantized_pitch, features
|
|
else:
|
|
return quantized_pitch
|
|
|
|
def merge_weights(self):
|
|
self.backbone.merge_weights()
|
|
|
|
def dump(self, f: Union[BinaryIO, str, bytes, os.PathLike]):
|
|
if isinstance(f, (str, bytes, os.PathLike)):
|
|
with open(f, "wb") as f:
|
|
self.dump(f)
|
|
return
|
|
if not hasattr(f, "write"):
|
|
raise TypeError
|
|
|
|
dump_layer(self.instfreq_embed_0, f)
|
|
dump_layer(self.instfreq_embed_1, f)
|
|
dump_layer(self.corr_embed_0, f)
|
|
dump_layer(self.corr_embed_1, f)
|
|
dump_layer(self.backbone, f)
|
|
dump_layer(self.head, f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def overlap_add(
|
|
ir: torch.Tensor,
|
|
pitch: torch.Tensor,
|
|
hop_length: int = 240,
|
|
delay: int = 0,
|
|
) -> torch.Tensor:
|
|
|
|
batch_size, ir_length, length = ir.size()
|
|
assert pitch.size() == (batch_size, length * hop_length)
|
|
assert 0 <= delay < ir_length, (delay, ir_length)
|
|
|
|
normalized_freq = pitch / 24000.0
|
|
|
|
normalized_freq[:, 0] = torch.rand(batch_size, device=pitch.device)
|
|
with torch.cuda.amp.autocast(enabled=False):
|
|
phase = (normalized_freq.double().cumsum_(1) % 1.0).float()
|
|
|
|
|
|
indices0, indices1 = torch.nonzero(phase[:, :-1] > phase[:, 1:], as_tuple=True)
|
|
|
|
numer = 1.0 - phase[indices0, indices1]
|
|
|
|
fractional_part = numer / (numer + phase[indices0, indices1 + 1])
|
|
|
|
|
|
values = ir[indices0, :, indices1 // hop_length]
|
|
|
|
|
|
|
|
values = torch.fft.rfft(values, n=ir_length, dim=1)
|
|
|
|
|
|
delay_phase = (
|
|
torch.arange(ir_length // 2 + 1, device=pitch.device, dtype=torch.float32)[
|
|
None, :
|
|
]
|
|
/ -ir_length
|
|
* fractional_part[:, None]
|
|
)
|
|
|
|
delay_phase = torch.polar(torch.ones_like(delay_phase), delay_phase * math.tau)
|
|
|
|
values = values * delay_phase
|
|
|
|
values = torch.fft.irfft(values, n=ir_length, dim=1)
|
|
|
|
|
|
|
|
values = values.ravel()
|
|
|
|
indices0 = indices0[:, None].expand(-1, ir_length).ravel()
|
|
|
|
indices1 = (
|
|
indices1[:, None] + torch.arange(ir_length, device=pitch.device)
|
|
).ravel()
|
|
|
|
|
|
overlap_added_signal = torch.zeros(
|
|
(batch_size, length * hop_length + ir_length), device=pitch.device
|
|
)
|
|
|
|
overlap_added_signal.index_put_((indices0, indices1), values, accumulate=True)
|
|
overlap_added_signal = overlap_added_signal[:, delay : -ir_length + delay]
|
|
|
|
|
|
return overlap_added_signal
|
|
|
|
|
|
def generate_noise(aperiodicity: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
batch_size, hop_length, length = aperiodicity.size()
|
|
excitation = torch.rand(
|
|
batch_size, (length + 1) * hop_length, device=aperiodicity.device
|
|
)
|
|
excitation -= 0.5
|
|
n_fft = 2 * hop_length
|
|
|
|
|
|
noise = torch.stft(
|
|
excitation,
|
|
n_fft=n_fft,
|
|
hop_length=hop_length,
|
|
window=torch.ones(n_fft, device=excitation.device),
|
|
center=False,
|
|
return_complex=True,
|
|
)
|
|
assert noise.size(2) == aperiodicity.size(2), (
|
|
noise.size(),
|
|
aperiodicity.size(),
|
|
)
|
|
noise[:, 0, :] = 0.0
|
|
noise[:, 1:, :] *= aperiodicity
|
|
|
|
|
|
|
|
noise = torch.fft.irfft(noise, n=2 * hop_length, dim=1)
|
|
noise *= torch.hann_window(2 * hop_length, device=noise.device)[None, :, None]
|
|
|
|
noise = F.fold(
|
|
noise,
|
|
(1, (length + 1) * hop_length),
|
|
(1, 2 * hop_length),
|
|
stride=(1, hop_length),
|
|
).squeeze_((1, 2))
|
|
noise = noise[:, hop_length // 2 : -hop_length // 2]
|
|
excitation = excitation[:, hop_length // 2 : -hop_length // 2]
|
|
return noise, excitation
|
|
|
|
|
|
class GradientEqualizerFunction(torch.autograd.Function):
|
|
"""ノルムが小さいほど勾配が大きくなってしまうのを補正する"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
rms = x.square().mean(dim=2, keepdim=True).sqrt_()
|
|
ctx.save_for_backward(rms)
|
|
return x
|
|
|
|
@staticmethod
|
|
def backward(ctx, dx: torch.Tensor) -> torch.Tensor:
|
|
|
|
(rms,) = ctx.saved_tensors
|
|
dx = dx * (math.sqrt(2.0) * rms + 0.1)
|
|
return dx
|
|
|
|
|
|
class PseudoDDSPVocoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
hop_length: int = 240,
|
|
n_pre_blocks: int = 4,
|
|
):
|
|
super().__init__()
|
|
self.hop_length = hop_length
|
|
|
|
self.prenet = ConvNeXtStack(
|
|
in_channels=channels,
|
|
channels=channels,
|
|
intermediate_channels=channels * 3,
|
|
n_blocks=n_pre_blocks,
|
|
delay=2,
|
|
embed_kernel_size=7,
|
|
kernel_size=33,
|
|
)
|
|
self.ir_generator = ConvNeXtStack(
|
|
in_channels=channels,
|
|
channels=channels,
|
|
intermediate_channels=channels * 3,
|
|
n_blocks=2,
|
|
delay=0,
|
|
embed_kernel_size=3,
|
|
kernel_size=33,
|
|
use_weight_norm=True,
|
|
)
|
|
self.ir_generator_post = weight_norm(nn.Conv1d(channels, 512, 1, bias=False))
|
|
self.aperiodicity_generator = ConvNeXtStack(
|
|
in_channels=channels,
|
|
channels=channels,
|
|
intermediate_channels=channels * 3,
|
|
n_blocks=2,
|
|
delay=0,
|
|
embed_kernel_size=3,
|
|
kernel_size=33,
|
|
use_weight_norm=True,
|
|
)
|
|
self.aperiodicity_generator_post = weight_norm(
|
|
nn.Conv1d(channels, hop_length, 1, bias=False)
|
|
)
|
|
|
|
def forward(
|
|
self, x: torch.Tensor, pitch: torch.Tensor
|
|
) -> tuple[torch.Tensor, dict[str, torch.Tensor]]:
|
|
|
|
|
|
|
|
x = self.prenet(x)
|
|
ir = self.ir_generator(x)
|
|
ir = F.elu(ir, inplace=True)
|
|
|
|
ir = self.ir_generator_post(ir)
|
|
|
|
|
|
|
|
pitch = torch.repeat_interleave(pitch, self.hop_length, dim=1)
|
|
|
|
|
|
periodic_signal = overlap_add(ir, pitch, self.hop_length, delay=120)
|
|
|
|
aperiodicity = self.aperiodicity_generator(x)
|
|
aperiodicity = F.elu(aperiodicity, inplace=True)
|
|
|
|
aperiodicity = self.aperiodicity_generator_post(aperiodicity)
|
|
|
|
aperiodic_signal, noise_excitation = generate_noise(aperiodicity)
|
|
|
|
|
|
y_g_hat = (periodic_signal + aperiodic_signal)[:, None, :]
|
|
|
|
y_g_hat = GradientEqualizerFunction.apply(y_g_hat)
|
|
|
|
return y_g_hat, {
|
|
"periodic_signal": periodic_signal.detach(),
|
|
"aperiodic_signal": aperiodic_signal.detach(),
|
|
"noise_excitation": noise_excitation.detach(),
|
|
}
|
|
|
|
def remove_weight_norm(self):
|
|
self.prenet.remove_weight_norm()
|
|
self.ir_generator.remove_weight_norm()
|
|
remove_weight_norm(self.ir_generator_post)
|
|
self.aperiodicity_generator.remove_weight_norm()
|
|
remove_weight_norm(self.aperiodicity_generator_post)
|
|
|
|
def merge_weights(self):
|
|
self.prenet.merge_weights()
|
|
self.ir_generator.merge_weights()
|
|
self.aperiodicity_generator.merge_weights()
|
|
|
|
def dump(self, f: Union[BinaryIO, str, bytes, os.PathLike]):
|
|
if isinstance(f, (str, bytes, os.PathLike)):
|
|
with open(f, "wb") as f:
|
|
self.dump(f)
|
|
return
|
|
if not hasattr(f, "write"):
|
|
raise TypeError
|
|
|
|
dump_layer(self.prenet, f)
|
|
dump_layer(self.ir_generator, f)
|
|
dump_layer(self.ir_generator_post, f)
|
|
dump_layer(self.aperiodicity_generator, f)
|
|
dump_layer(self.aperiodicity_generator_post, f)
|
|
|
|
|
|
def slice_segments(
|
|
x: torch.Tensor, start_indices: torch.Tensor, segment_length: int
|
|
) -> torch.Tensor:
|
|
batch_size, channels, _ = x.size()
|
|
|
|
indices = start_indices[:, None, None] + torch.arange(
|
|
segment_length, device=start_indices.device
|
|
)
|
|
|
|
indices = indices.expand(batch_size, channels, segment_length)
|
|
return x.gather(2, indices)
|
|
|
|
|
|
class ConverterNetwork(nn.Module):
|
|
def __init__(
|
|
self,
|
|
phone_extractor: PhoneExtractor,
|
|
pitch_estimator: PitchEstimator,
|
|
n_speakers: int,
|
|
hidden_channels: int,
|
|
):
|
|
super().__init__()
|
|
self.frozen_modules = {
|
|
"phone_extractor": phone_extractor.eval().requires_grad_(False),
|
|
"pitch_estimator": pitch_estimator.eval().requires_grad_(False),
|
|
}
|
|
self.embed_phone = nn.Conv1d(256, hidden_channels, 1)
|
|
self.embed_quantized_pitch = nn.Embedding(384, hidden_channels)
|
|
phase = (
|
|
torch.arange(384, dtype=torch.float)[:, None]
|
|
* (
|
|
torch.arange(0, hidden_channels, 2, dtype=torch.float)
|
|
* (-math.log(10000.0) / hidden_channels)
|
|
).exp_()
|
|
)
|
|
self.embed_quantized_pitch.weight.data[:, 0::2] = phase.sin()
|
|
self.embed_quantized_pitch.weight.data[:, 1::2] = phase.cos_()
|
|
self.embed_quantized_pitch.weight.requires_grad_(False)
|
|
self.embed_pitch_features = nn.Conv1d(4, hidden_channels, 1)
|
|
self.embed_speaker = nn.Embedding(n_speakers, hidden_channels)
|
|
self.embed_formant_shift = nn.Embedding(9, hidden_channels)
|
|
self.vocoder = PseudoDDSPVocoder(
|
|
channels=hidden_channels,
|
|
hop_length=240,
|
|
n_pre_blocks=4,
|
|
)
|
|
self.melspectrogram = torchaudio.transforms.MelSpectrogram(
|
|
sample_rate=24000,
|
|
n_fft=1024,
|
|
win_length=720,
|
|
hop_length=128,
|
|
n_mels=80,
|
|
power=2,
|
|
norm="slaney",
|
|
mel_scale="slaney",
|
|
)
|
|
|
|
def _get_resampler(
|
|
self, orig_freq, new_freq, device, cache={}
|
|
) -> torchaudio.transforms.Resample:
|
|
key = orig_freq, new_freq
|
|
if key in cache:
|
|
return cache[key]
|
|
resampler = torchaudio.transforms.Resample(orig_freq, new_freq).to(device)
|
|
cache[key] = resampler
|
|
return resampler
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
target_speaker_id: torch.Tensor,
|
|
formant_shift_semitone: torch.Tensor,
|
|
pitch_shift_semitone: Optional[torch.Tensor] = None,
|
|
slice_start_indices: Optional[torch.Tensor] = None,
|
|
slice_segment_length: Optional[int] = None,
|
|
return_stats: bool = False,
|
|
) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, float]]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
batch_size, _, _ = x.size()
|
|
|
|
with torch.inference_mode():
|
|
phone_extractor: PhoneExtractor = self.frozen_modules["phone_extractor"]
|
|
pitch_estimator: PitchEstimator = self.frozen_modules["pitch_estimator"]
|
|
|
|
phone = phone_extractor.units(x).transpose(1, 2)
|
|
|
|
pitch, energy = pitch_estimator(x)
|
|
|
|
if self.training:
|
|
|
|
weights = pitch.softmax(1)[:, 1:, :].mean(2)
|
|
|
|
mean_pitch = (
|
|
weights * torch.arange(1, 384, device=weights.device)
|
|
).sum(1) / weights.sum(1)
|
|
mean_pitch = mean_pitch.round_().long()
|
|
target_pitch = torch.randint_like(mean_pitch, 64, 257)
|
|
shift = target_pitch - mean_pitch
|
|
shift_ratio = (
|
|
2.0 ** (shift.float() / pitch_estimator.bins_per_octave)
|
|
).tolist()
|
|
shift = []
|
|
interval_length = 100
|
|
interval_zeros = torch.zeros(
|
|
(1, 1, interval_length * 160), device=x.device
|
|
)
|
|
concatenated_shifted_x = []
|
|
offsets = [0]
|
|
for i in range(batch_size):
|
|
shift_ratio_i = shift_ratio[i]
|
|
shift_ratio_fraction_i = Fraction.from_float(
|
|
shift_ratio_i
|
|
).limit_denominator(30)
|
|
shift_numer_i = shift_ratio_fraction_i.numerator
|
|
shift_denom_i = shift_ratio_fraction_i.denominator
|
|
shift_ratio_i = shift_numer_i / shift_denom_i
|
|
shift_i = int(
|
|
round(
|
|
math.log2(shift_ratio_i) * pitch_estimator.bins_per_octave
|
|
)
|
|
)
|
|
shift.append(shift_i)
|
|
shift_ratio[i] = shift_ratio_i
|
|
|
|
with torch.cuda.amp.autocast(False):
|
|
shifted_x_i = self._get_resampler(
|
|
shift_numer_i, shift_denom_i, x.device
|
|
)(x[i])[None]
|
|
if shifted_x_i.size(2) % 160 != 0:
|
|
shifted_x_i = F.pad(
|
|
shifted_x_i,
|
|
(0, 160 - shifted_x_i.size(2) % 160),
|
|
mode="reflect",
|
|
)
|
|
assert shifted_x_i.size(2) % 160 == 0
|
|
offsets.append(
|
|
offsets[-1] + interval_length + shifted_x_i.size(2) // 160
|
|
)
|
|
concatenated_shifted_x.extend([interval_zeros, shifted_x_i])
|
|
if offsets[-1] % 256 != 0:
|
|
|
|
|
|
concatenated_shifted_x.append(
|
|
torch.zeros(
|
|
(1, 1, (256 - offsets[-1] % 256) * 160), device=x.device
|
|
)
|
|
)
|
|
|
|
concatenated_shifted_x = torch.cat(concatenated_shifted_x, dim=2)
|
|
assert concatenated_shifted_x.size(2) % (256 * 160) == 0
|
|
|
|
concatenated_pitch, concatenated_energy = pitch_estimator(
|
|
concatenated_shifted_x
|
|
)
|
|
for i in range(batch_size):
|
|
shift_i = shift[i]
|
|
shift_ratio_i = shift_ratio[i]
|
|
left = offsets[i] + interval_length
|
|
right = offsets[i + 1]
|
|
pitch_i = concatenated_pitch[:, :, left:right]
|
|
energy_i = concatenated_energy[:, :, left:right]
|
|
pitch_i = F.interpolate(
|
|
pitch_i,
|
|
scale_factor=shift_ratio_i,
|
|
mode="linear",
|
|
align_corners=False,
|
|
)
|
|
energy_i = F.interpolate(
|
|
energy_i,
|
|
scale_factor=shift_ratio_i,
|
|
mode="linear",
|
|
align_corners=False,
|
|
)
|
|
assert pitch_i.size(2) == energy_i.size(2)
|
|
assert abs(pitch_i.size(2) - pitch.size(2)) <= 10
|
|
length = min(pitch_i.size(2), pitch.size(2))
|
|
|
|
if shift_i > 0:
|
|
pitch[i : i + 1, :1, :length] = pitch_i[:, :1, :length]
|
|
pitch[i : i + 1, 1:-shift_i, :length] = pitch_i[
|
|
:, 1 + shift_i :, :length
|
|
]
|
|
pitch[i : i + 1, -shift_i:, :length] = -10.0
|
|
elif shift_i < 0:
|
|
pitch[i : i + 1, :1, :length] = pitch_i[:, :1, :length]
|
|
pitch[i : i + 1, 1 : 1 - shift_i, :length] = -10.0
|
|
pitch[i : i + 1, 1 - shift_i :, :length] = pitch_i[
|
|
:, 1:shift_i, :length
|
|
]
|
|
energy[i : i + 1, :, :length] = energy_i[:, :, :length]
|
|
|
|
|
|
quantized_pitch, pitch_features = pitch_estimator.sample_pitch(
|
|
pitch, return_features=True
|
|
)
|
|
if pitch_shift_semitone is not None:
|
|
quantized_pitch = torch.where(
|
|
quantized_pitch == 0,
|
|
quantized_pitch,
|
|
(
|
|
quantized_pitch
|
|
+ (
|
|
pitch_shift_semitone[:, None]
|
|
* (pitch_estimator.bins_per_octave / 12)
|
|
)
|
|
.round_()
|
|
.long()
|
|
).clamp_(1, 383),
|
|
)
|
|
pitch = 55.0 * 2.0 ** (
|
|
quantized_pitch.float() / pitch_estimator.bins_per_octave
|
|
)
|
|
|
|
|
|
|
|
energy = F.pad(energy[:, :, :-1], (1, 0), mode="reflect")
|
|
quantized_pitch = F.pad(quantized_pitch[:, :-2], (2, 0), mode="reflect")
|
|
pitch_features = F.pad(pitch_features[:, :, :-2], (2, 0), mode="reflect")
|
|
|
|
pitch_features = torch.cat([energy, pitch_features], dim=1)
|
|
formant_shift_indices = (
|
|
((formant_shift_semitone + 2.0) * 2.0).round_().long()
|
|
)
|
|
|
|
phone = phone.clone()
|
|
quantized_pitch = quantized_pitch.clone()
|
|
pitch_features = pitch_features.clone()
|
|
formant_shift_indices = formant_shift_indices.clone()
|
|
pitch = pitch.clone()
|
|
|
|
|
|
x = (
|
|
self.embed_phone(phone)
|
|
+ self.embed_quantized_pitch(quantized_pitch).transpose(1, 2)
|
|
+ self.embed_pitch_features(pitch_features)
|
|
+ (
|
|
self.embed_speaker(target_speaker_id)[:, :, None]
|
|
+ self.embed_formant_shift(formant_shift_indices)[:, :, None]
|
|
)
|
|
)
|
|
if slice_start_indices is not None:
|
|
assert slice_segment_length is not None
|
|
|
|
x = slice_segments(x, slice_start_indices, slice_segment_length)
|
|
x = F.silu(x, inplace=True)
|
|
|
|
y_g_hat, stats = self.vocoder(x, pitch)
|
|
if return_stats:
|
|
return y_g_hat, stats
|
|
else:
|
|
return y_g_hat
|
|
|
|
def _normalize_melsp(self, x):
|
|
return x.log().mul(0.5).clamp_(min=math.log(1e-5))
|
|
|
|
def forward_and_compute_loss(
|
|
self,
|
|
noisy_wavs_16k: torch.Tensor,
|
|
target_speaker_id: torch.Tensor,
|
|
formant_shift_semitone: torch.Tensor,
|
|
slice_start_indices: torch.Tensor,
|
|
slice_segment_length: int,
|
|
y_all: torch.Tensor,
|
|
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y_hat_all, stats = self(
|
|
noisy_wavs_16k,
|
|
target_speaker_id,
|
|
formant_shift_semitone,
|
|
return_stats=True,
|
|
)
|
|
|
|
with torch.cuda.amp.autocast(False):
|
|
melsp_periodic_signal = self.melspectrogram(
|
|
stats["periodic_signal"].float()
|
|
)
|
|
melsp_aperiodic_signal = self.melspectrogram(
|
|
stats["aperiodic_signal"].float()
|
|
)
|
|
melsp_noise_excitation = self.melspectrogram(
|
|
stats["noise_excitation"].float()
|
|
)
|
|
|
|
|
|
|
|
|
|
reference_melsp = self.melspectrogram.mel_scale(
|
|
torch.full(
|
|
(1, self.melspectrogram.n_fft // 2 + 1, 1),
|
|
(1 / 6) * (3 / 8) * 0.5 * self.melspectrogram.win_length,
|
|
device=noisy_wavs_16k.device,
|
|
)
|
|
)
|
|
aperiodic_ratio = melsp_aperiodic_signal / (
|
|
melsp_periodic_signal + melsp_aperiodic_signal + 1e-5
|
|
)
|
|
compensation_ratio = reference_melsp / (melsp_noise_excitation + 1e-5)
|
|
|
|
melsp_y_hat = self.melspectrogram(y_hat_all.float().squeeze(1))
|
|
melsp_y_hat = melsp_y_hat * (
|
|
(1.0 - aperiodic_ratio) + aperiodic_ratio * compensation_ratio
|
|
)
|
|
|
|
y_hat_mel = self._normalize_melsp(melsp_y_hat)
|
|
|
|
y_hat = slice_segments(
|
|
y_hat_all, slice_start_indices * 240, slice_segment_length * 240
|
|
)
|
|
|
|
y_mel = self._normalize_melsp(self.melspectrogram(y_all.squeeze(1)))
|
|
|
|
y = slice_segments(
|
|
y_all, slice_start_indices * 240, slice_segment_length * 240
|
|
)
|
|
|
|
loss_mel = F.l1_loss(y_hat_mel, y_mel)
|
|
|
|
return y, y_hat, y_hat_all, loss_mel
|
|
|
|
def remove_weight_norm(self):
|
|
self.vocoder.remove_weight_norm()
|
|
|
|
def merge_weights(self):
|
|
self.vocoder.merge_weights()
|
|
|
|
def dump(self, f: Union[BinaryIO, str, bytes, os.PathLike]):
|
|
if isinstance(f, (str, bytes, os.PathLike)):
|
|
with open(f, "wb") as f:
|
|
self.dump(f)
|
|
return
|
|
if not hasattr(f, "write"):
|
|
raise TypeError
|
|
|
|
dump_layer(self.embed_phone, f)
|
|
dump_layer(self.embed_quantized_pitch, f)
|
|
dump_layer(self.embed_pitch_features, f)
|
|
dump_layer(self.vocoder, f)
|
|
|
|
|
|
|
|
|
|
|
|
def _normalize(tensor: torch.Tensor, dim: int) -> torch.Tensor:
|
|
denom = tensor.norm(p=2.0, dim=dim, keepdim=True).clamp_min(1e-6)
|
|
return tensor / denom
|
|
|
|
|
|
class SANConv2d(nn.Conv2d):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
kernel_size: int,
|
|
stride: int = 1,
|
|
padding: int = 0,
|
|
dilation: int = 1,
|
|
bias: bool = True,
|
|
padding_mode="zeros",
|
|
device=None,
|
|
dtype=None,
|
|
):
|
|
super().__init__(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=1,
|
|
bias=bias,
|
|
padding_mode=padding_mode,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
scale = self.weight.norm(p=2.0, dim=[1, 2, 3], keepdim=True).clamp_min(1e-6)
|
|
self.weight = nn.parameter.Parameter(self.weight / scale.expand_as(self.weight))
|
|
self.scale = nn.parameter.Parameter(scale.view(out_channels))
|
|
if bias:
|
|
self.bias = nn.parameter.Parameter(
|
|
torch.zeros(in_channels, device=device, dtype=dtype)
|
|
)
|
|
else:
|
|
self.register_parameter("bias", None)
|
|
|
|
def forward(
|
|
self, input: torch.Tensor, flg_san_train: bool = False
|
|
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
|
if self.bias is not None:
|
|
input = input + self.bias.view(self.in_channels, 1, 1)
|
|
normalized_weight = self._get_normalized_weight()
|
|
scale = self.scale.view(self.out_channels, 1, 1)
|
|
if flg_san_train:
|
|
out_fun = F.conv2d(
|
|
input,
|
|
normalized_weight.detach(),
|
|
None,
|
|
self.stride,
|
|
self.padding,
|
|
self.dilation,
|
|
self.groups,
|
|
)
|
|
out_dir = F.conv2d(
|
|
input.detach(),
|
|
normalized_weight,
|
|
None,
|
|
self.stride,
|
|
self.padding,
|
|
self.dilation,
|
|
self.groups,
|
|
)
|
|
out = out_fun * scale, out_dir * scale.detach()
|
|
else:
|
|
out = F.conv2d(
|
|
input,
|
|
normalized_weight,
|
|
None,
|
|
self.stride,
|
|
self.padding,
|
|
self.dilation,
|
|
self.groups,
|
|
)
|
|
out = out * scale
|
|
return out
|
|
|
|
@torch.no_grad()
|
|
def normalize_weight(self):
|
|
self.weight.data = self._get_normalized_weight()
|
|
|
|
def _get_normalized_weight(self) -> torch.Tensor:
|
|
return _normalize(self.weight, dim=[1, 2, 3])
|
|
|
|
|
|
def get_padding(kernel_size: int, dilation: int = 1) -> int:
|
|
return (kernel_size * dilation - dilation) // 2
|
|
|
|
|
|
class DiscriminatorP(nn.Module):
|
|
def __init__(
|
|
self, period: int, kernel_size: int = 5, stride: int = 3, san: bool = False
|
|
):
|
|
super().__init__()
|
|
self.period = period
|
|
self.san = san
|
|
|
|
self.convs = nn.ModuleList([
|
|
weight_norm(nn.Conv2d(1, 32, (kernel_size, 1), (stride, 1), (get_padding(kernel_size, 1), 0))),
|
|
weight_norm(nn.Conv2d(32, 128, (kernel_size, 1), (stride, 1), (get_padding(kernel_size, 1), 0))),
|
|
weight_norm(nn.Conv2d(128, 512, (kernel_size, 1), (stride, 1), (get_padding(kernel_size, 1), 0))),
|
|
weight_norm(nn.Conv2d(512, 1024, (kernel_size, 1), (stride, 1), (get_padding(kernel_size, 1), 0))),
|
|
weight_norm(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, (get_padding(kernel_size, 1), 0))),
|
|
])
|
|
|
|
if san:
|
|
self.conv_post = SANConv2d(1024, 1, (3, 1), 1, (1, 0))
|
|
else:
|
|
self.conv_post = weight_norm(nn.Conv2d(1024, 1, (3, 1), 1, (1, 0)))
|
|
|
|
def forward(
|
|
self, x: torch.Tensor, flg_san_train: bool = False
|
|
) -> tuple[
|
|
Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]], list[torch.Tensor]
|
|
]:
|
|
fmap = []
|
|
|
|
b, c, t = x.shape
|
|
if t % self.period != 0:
|
|
n_pad = self.period - (t % self.period)
|
|
x = F.pad(x, (0, n_pad), "reflect")
|
|
t = t + n_pad
|
|
x = x.view(b, c, t // self.period, self.period)
|
|
|
|
for l in self.convs:
|
|
x = l(x)
|
|
x = F.silu(x, inplace=True)
|
|
fmap.append(x)
|
|
if self.san:
|
|
x = self.conv_post(x, flg_san_train=flg_san_train)
|
|
else:
|
|
x = self.conv_post(x)
|
|
if flg_san_train:
|
|
x_fun, x_dir = x
|
|
fmap.append(x_fun)
|
|
x_fun = torch.flatten(x_fun, 1, -1)
|
|
x_dir = torch.flatten(x_dir, 1, -1)
|
|
x = x_fun, x_dir
|
|
else:
|
|
fmap.append(x)
|
|
x = torch.flatten(x, 1, -1)
|
|
return x, fmap
|
|
|
|
|
|
class DiscriminatorR(nn.Module):
|
|
def __init__(self, resolution: int, san: bool = False):
|
|
super().__init__()
|
|
self.resolution = resolution
|
|
self.san = san
|
|
assert len(self.resolution) == 3
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
weight_norm(nn.Conv2d(1, 32, (3, 9), padding=(1, 4))),
|
|
weight_norm(nn.Conv2d(32, 32, (3, 9), (1, 2), (1, 4))),
|
|
weight_norm(nn.Conv2d(32, 32, (3, 9), (1, 2), (1, 4))),
|
|
weight_norm(nn.Conv2d(32, 32, (3, 9), (1, 2), (1, 4))),
|
|
weight_norm(nn.Conv2d(32, 32, (3, 3), padding=(1, 1))),
|
|
]
|
|
)
|
|
if san:
|
|
self.conv_post = SANConv2d(32, 1, (3, 3), padding=(1, 1))
|
|
else:
|
|
self.conv_post = weight_norm(nn.Conv2d(32, 1, (3, 3), padding=(1, 1)))
|
|
|
|
def forward(
|
|
self, x: torch.Tensor, flg_san_train: bool = False
|
|
) -> tuple[
|
|
Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]], list[torch.Tensor]
|
|
]:
|
|
fmap = []
|
|
|
|
x = self._spectrogram(x)
|
|
x.unsqueeze_(1)
|
|
for l in self.convs:
|
|
x = l(x)
|
|
x = F.silu(x, inplace=True)
|
|
fmap.append(x)
|
|
if self.san:
|
|
x = self.conv_post(x, flg_san_train=flg_san_train)
|
|
else:
|
|
x = self.conv_post(x)
|
|
if flg_san_train:
|
|
x_fun, x_dir = x
|
|
fmap.append(x_fun)
|
|
x_fun = torch.flatten(x_fun, 1, -1)
|
|
x_dir = torch.flatten(x_dir, 1, -1)
|
|
x = x_fun, x_dir
|
|
else:
|
|
fmap.append(x)
|
|
x = torch.flatten(x, 1, -1)
|
|
|
|
return x, fmap
|
|
|
|
def _spectrogram(self, x: torch.Tensor) -> torch.Tensor:
|
|
n_fft, hop_length, win_length = self.resolution
|
|
x = F.pad(
|
|
x, ((n_fft - hop_length) // 2, (n_fft - hop_length) // 2), mode="reflect"
|
|
)
|
|
x.squeeze_(1)
|
|
with torch.cuda.amp.autocast(False):
|
|
mag = torch.stft(
|
|
x.float(),
|
|
n_fft=n_fft,
|
|
hop_length=hop_length,
|
|
win_length=win_length,
|
|
window=torch.ones(win_length, device=x.device),
|
|
center=False,
|
|
return_complex=True,
|
|
).abs()
|
|
|
|
return mag
|
|
|
|
|
|
class MultiPeriodDiscriminator(nn.Module):
|
|
def __init__(self, san: bool = False):
|
|
super().__init__()
|
|
resolutions = [[1024, 120, 600], [2048, 240, 1200], [512, 50, 240]]
|
|
periods = [2, 3, 5, 7, 11]
|
|
self.discriminators = nn.ModuleList(
|
|
[DiscriminatorR(r, san=san) for r in resolutions]
|
|
+ [DiscriminatorP(p, san=san) for p in periods]
|
|
)
|
|
self.discriminator_names = [f"R_{n}_{h}_{w}" for n, h, w in resolutions] + [
|
|
f"P_{p}" for p in periods
|
|
]
|
|
self.san = san
|
|
|
|
def forward(
|
|
self, y: torch.Tensor, y_hat: torch.Tensor, flg_san_train: bool = False
|
|
) -> tuple[
|
|
list[Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]],
|
|
list[Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]],
|
|
list[list[torch.Tensor]],
|
|
list[list[torch.Tensor]],
|
|
]:
|
|
batch_size = y.size(0)
|
|
concatenated_y_y_hat = torch.cat([y, y_hat])
|
|
y_d_rs = []
|
|
y_d_gs = []
|
|
fmap_rs = []
|
|
fmap_gs = []
|
|
for d in self.discriminators:
|
|
if flg_san_train:
|
|
(y_d_fun, y_d_dir), fmap = d(
|
|
concatenated_y_y_hat, flg_san_train=flg_san_train
|
|
)
|
|
y_d_r_fun, y_d_g_fun = torch.split(y_d_fun, batch_size)
|
|
y_d_r_dir, y_d_g_dir = torch.split(y_d_dir, batch_size)
|
|
y_d_r = y_d_r_fun, y_d_r_dir
|
|
y_d_g = y_d_g_fun, y_d_g_dir
|
|
else:
|
|
y_d, fmap = d(concatenated_y_y_hat, flg_san_train=flg_san_train)
|
|
y_d_r, y_d_g = torch.split(y_d, batch_size)
|
|
fmap_r = []
|
|
fmap_g = []
|
|
for fm in fmap:
|
|
fm_r, fm_g = torch.split(fm, batch_size)
|
|
fmap_r.append(fm_r)
|
|
fmap_g.append(fm_g)
|
|
y_d_rs.append(y_d_r)
|
|
y_d_gs.append(y_d_g)
|
|
fmap_rs.append(fmap_r)
|
|
fmap_gs.append(fmap_g)
|
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
|
|
|
def forward_and_compute_discriminator_loss(
|
|
self, y: torch.Tensor, y_hat: torch.Tensor
|
|
) -> tuple[torch.Tensor, dict[str, float]]:
|
|
y_d_rs, y_d_gs, _, _ = self(y, y_hat, flg_san_train=self.san)
|
|
loss = 0.0
|
|
stats = {}
|
|
assert len(y_d_gs) == len(y_d_rs) == len(self.discriminators)
|
|
for dr, dg, name in zip(y_d_rs, y_d_gs, self.discriminator_names):
|
|
if self.san:
|
|
dr_fun, dr_dir = map(lambda x: x.float(), dr)
|
|
dg_fun, dg_dir = map(lambda x: x.float(), dg)
|
|
r_loss_fun = F.softplus(1.0 - dr_fun).square().mean()
|
|
g_loss_fun = F.softplus(dg_fun).square().mean()
|
|
r_loss_dir = F.softplus(1.0 - dr_dir).square().mean()
|
|
g_loss_dir = -F.softplus(1.0 - dg_dir).square().mean()
|
|
r_loss = r_loss_fun + r_loss_dir
|
|
g_loss = g_loss_fun + g_loss_dir
|
|
else:
|
|
dr = dr.float()
|
|
dg = dg.float()
|
|
r_loss = (1.0 - dr).square().mean()
|
|
g_loss = dg.square().mean()
|
|
stats[f"{name}_dr_loss"] = r_loss.item()
|
|
stats[f"{name}_dg_loss"] = g_loss.item()
|
|
loss += r_loss + g_loss
|
|
return loss, stats
|
|
|
|
def forward_and_compute_generator_loss(
|
|
self, y: torch.Tensor, y_hat: torch.Tensor
|
|
) -> tuple[torch.Tensor, torch.Tensor, dict[str, float]]:
|
|
_, y_d_gs, fmap_rs, fmap_gs = self(y, y_hat, flg_san_train=False)
|
|
stats = {}
|
|
|
|
adv_loss = 0.0
|
|
for dg, name in zip(y_d_gs, self.discriminator_names):
|
|
dg = dg.float()
|
|
if self.san:
|
|
g_loss = F.softplus(1.0 - dg).square().mean()
|
|
else:
|
|
g_loss = (1.0 - dg).square().mean()
|
|
stats[f"{name}_gg_loss"] = g_loss.item()
|
|
adv_loss += g_loss
|
|
|
|
fm_loss = 0.0
|
|
for fr, fg in zip(fmap_rs, fmap_gs):
|
|
for r, g in zip(fr, fg):
|
|
fm_loss += (r.detach() - g).abs().mean()
|
|
return adv_loss, fm_loss, stats
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GradBalancer:
|
|
"""Adapted from https://github.com/facebookresearch/encodec/blob/main/encodec/balancer.py"""
|
|
|
|
def __init__(
|
|
self,
|
|
weights: dict[str, float],
|
|
rescale_grads: bool = True,
|
|
total_norm: float = 1.0,
|
|
ema_decay: float = 0.999,
|
|
per_batch_item: bool = True,
|
|
):
|
|
self.weights = weights
|
|
self.per_batch_item = per_batch_item
|
|
self.total_norm = total_norm
|
|
self.ema_decay = ema_decay
|
|
self.rescale_grads = rescale_grads
|
|
|
|
self.ema_total: dict[str, float] = defaultdict(float)
|
|
self.ema_fix: dict[str, float] = defaultdict(float)
|
|
|
|
def backward(
|
|
self,
|
|
losses: dict[str, torch.Tensor],
|
|
input: torch.Tensor,
|
|
scaler: Optional[torch.cuda.amp.GradScaler] = None,
|
|
skip_update_ema: bool = False,
|
|
) -> dict[str, float]:
|
|
stats = {}
|
|
if skip_update_ema:
|
|
assert len(losses) == len(self.ema_total)
|
|
ema_norms = {k: tot / self.ema_fix[k] for k, tot in self.ema_total.items()}
|
|
else:
|
|
|
|
norms = {}
|
|
grads = {}
|
|
for name, loss in losses.items():
|
|
if scaler is not None:
|
|
loss = scaler.scale(loss)
|
|
(grad,) = torch.autograd.grad(loss, [input], retain_graph=True)
|
|
|
|
if not grad.isfinite().all():
|
|
input.backward(grad)
|
|
return {}
|
|
grad = grad.detach() / (1.0 if scaler is None else scaler.get_scale())
|
|
if self.per_batch_item:
|
|
dims = tuple(range(1, grad.dim()))
|
|
ema_norm = grad.norm(dim=dims).mean()
|
|
else:
|
|
ema_norm = grad.norm()
|
|
norms[name] = float(ema_norm)
|
|
grads[name] = grad
|
|
|
|
|
|
for key, value in norms.items():
|
|
self.ema_total[key] = self.ema_total[key] * self.ema_decay + value
|
|
self.ema_fix[key] = self.ema_fix[key] * self.ema_decay + 1.0
|
|
ema_norms = {k: tot / self.ema_fix[k] for k, tot in self.ema_total.items()}
|
|
|
|
|
|
total_ema_norm = sum(ema_norms.values())
|
|
for k, ema_norm in ema_norms.items():
|
|
stats[f"grad_norm_value_{k}"] = ema_norm
|
|
stats[f"grad_norm_ratio_{k}"] = ema_norm / (total_ema_norm + 1e-12)
|
|
|
|
|
|
if self.rescale_grads:
|
|
total_weights = sum([self.weights[k] for k in ema_norms])
|
|
ratios = {k: w / total_weights for k, w in self.weights.items()}
|
|
|
|
|
|
loss = 0.0
|
|
for name, ema_norm in ema_norms.items():
|
|
if self.rescale_grads:
|
|
scale = ratios[name] * self.total_norm / (ema_norm + 1e-12)
|
|
else:
|
|
scale = self.weights[name]
|
|
loss += (losses if skip_update_ema else grads)[name] * scale
|
|
if scaler is not None:
|
|
loss = scaler.scale(loss)
|
|
if skip_update_ema:
|
|
loss.backward()
|
|
else:
|
|
input.backward(loss)
|
|
return stats
|
|
|
|
def state_dict(self):
|
|
return {
|
|
"ema_total": self.ema_total,
|
|
"ema_fix": self.ema_fix,
|
|
}
|
|
|
|
def load_state_dict(self, state_dict):
|
|
self.ema_total = state_dict["ema_total"]
|
|
self.ema_fix = state_dict["ema_fix"]
|
|
|
|
|
|
class QualityTester(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.utmos = torch.hub.load(
|
|
"tarepan/SpeechMOS:v1.0.0", "utmos22_strong", trust_repo=True
|
|
).eval()
|
|
|
|
@torch.inference_mode()
|
|
def compute_mos(self, wav: torch.Tensor) -> dict[str, list[float]]:
|
|
res = {"utmos": self.utmos(wav, sr=16000).tolist()}
|
|
return res
|
|
|
|
def test(
|
|
self, converted_wav: torch.Tensor, source_wav: torch.Tensor
|
|
) -> dict[str, list[float]]:
|
|
|
|
res = {}
|
|
res.update(self.compute_mos(converted_wav))
|
|
return res
|
|
|
|
def test_many(
|
|
self, converted_wavs: list[torch.Tensor], source_wavs: list[torch.Tensor]
|
|
) -> tuple[dict[str, float], dict[str, list[float]]]:
|
|
|
|
results = defaultdict(list)
|
|
assert len(converted_wavs) == len(source_wavs)
|
|
for converted_wav, source_wav in zip(converted_wavs, source_wavs):
|
|
res = self.test(converted_wav, source_wav)
|
|
for metric_name, value in res.items():
|
|
results[metric_name].extend(value)
|
|
return {
|
|
metric_name: sum(values) / len(values)
|
|
for metric_name, values in results.items()
|
|
}, results
|
|
|
|
|
|
def compute_grad_norm(
|
|
model: nn.Module, return_stats: bool = False
|
|
) -> Union[float, dict[str, float]]:
|
|
total_norm = 0.0
|
|
stats = {}
|
|
for name, p in model.named_parameters():
|
|
if p.grad is None:
|
|
continue
|
|
param_norm = p.grad.data.norm().item()
|
|
if not math.isfinite(param_norm):
|
|
param_norm = p.grad.data.float().norm().item()
|
|
total_norm += param_norm * param_norm
|
|
if return_stats:
|
|
stats[f"grad_norm_{name}"] = param_norm
|
|
total_norm = math.sqrt(total_norm)
|
|
if return_stats:
|
|
return total_norm, stats
|
|
else:
|
|
return total_norm
|
|
|
|
|
|
def compute_mean_f0(
|
|
files: list[Path], method: Literal["dio", "harvest"] = "dio"
|
|
) -> float:
|
|
sum_log_f0 = 0.0
|
|
n_frames = 0
|
|
for file in files:
|
|
wav, sr = torchaudio.load(file, backend="soundfile")
|
|
if method == "dio":
|
|
f0, _ = pyworld.dio(wav.ravel().numpy().astype(np.float64), sr)
|
|
elif method == "harvest":
|
|
f0, _ = pyworld.harvest(wav.ravel().numpy().astype(np.float64), sr)
|
|
else:
|
|
raise ValueError(f"Invalid method: {method}")
|
|
f0 = f0[f0 > 0]
|
|
sum_log_f0 += float(np.log(f0).sum())
|
|
n_frames += len(f0)
|
|
if n_frames == 0:
|
|
return math.nan
|
|
mean_log_f0 = sum_log_f0 / n_frames
|
|
return math.exp(mean_log_f0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_resampler(
|
|
sr_before: int, sr_after: int, device="cpu", cache={}
|
|
) -> torchaudio.transforms.Resample:
|
|
if not isinstance(device, str):
|
|
device = str(device)
|
|
if (sr_before, sr_after, device) not in cache:
|
|
cache[(sr_before, sr_after, device)] = torchaudio.transforms.Resample(
|
|
sr_before, sr_after
|
|
).to(device)
|
|
return cache[(sr_before, sr_after, device)]
|
|
|
|
|
|
def convolve(signal: torch.Tensor, ir: torch.Tensor) -> torch.Tensor:
|
|
n = 1 << (signal.size(-1) + ir.size(-1) - 2).bit_length()
|
|
res = torch.fft.irfft(torch.fft.rfft(signal, n=n) * torch.fft.rfft(ir, n=n), n=n)
|
|
return res[..., : signal.size(-1)]
|
|
|
|
|
|
def random_filter(audio: torch.Tensor) -> torch.Tensor:
|
|
assert audio.ndim == 2
|
|
ab = torch.rand(audio.size(0), 6) * 0.75 - 0.375
|
|
a, b = ab[:, :3], ab[:, 3:]
|
|
a[:, 0] = 1.0
|
|
b[:, 0] = 1.0
|
|
audio = torchaudio.functional.lfilter(audio, a, b, clamp=False)
|
|
return audio
|
|
|
|
|
|
def get_noise(
|
|
n_samples: int, sample_rate: float, files: list[Union[str, bytes, os.PathLike]]
|
|
) -> torch.Tensor:
|
|
resample_augmentation_candidates = [0.9, 0.95, 1.0, 1.05, 1.1]
|
|
wavs = []
|
|
current_length = 0
|
|
while current_length < n_samples:
|
|
idx_files = torch.randint(0, len(files), ())
|
|
file = files[idx_files]
|
|
wav, sr = torchaudio.load(file, backend="soundfile")
|
|
assert wav.size(0) == 1
|
|
augmented_sample_rate = int(
|
|
round(
|
|
sample_rate
|
|
* resample_augmentation_candidates[
|
|
torch.randint(0, len(resample_augmentation_candidates), ())
|
|
]
|
|
)
|
|
)
|
|
resampler = get_resampler(sr, augmented_sample_rate)
|
|
wav = resampler(wav)
|
|
wav = random_filter(wav)
|
|
wav *= 0.99 / (wav.abs().max() + 1e-5)
|
|
wavs.append(wav)
|
|
current_length += wav.size(1)
|
|
start = torch.randint(0, current_length - n_samples + 1, ())
|
|
wav = torch.cat(wavs, dim=1)[:, start : start + n_samples]
|
|
assert wav.size() == (1, n_samples), wav.size()
|
|
return wav
|
|
|
|
|
|
def get_butterworth_lpf(
|
|
cutoff_freq: int, sample_rate: int, cache={}
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
if (cutoff_freq, sample_rate) not in cache:
|
|
q = math.sqrt(0.5)
|
|
omega = math.tau * cutoff_freq / sample_rate
|
|
cos_omega = math.cos(omega)
|
|
alpha = math.sin(omega) / (2.0 * q)
|
|
b1 = (1.0 - cos_omega) / (1.0 + alpha)
|
|
b0 = b1 * 0.5
|
|
a1 = -2.0 * cos_omega / (1.0 + alpha)
|
|
a2 = (1.0 - alpha) / (1.0 + alpha)
|
|
cache[(cutoff_freq, sample_rate)] = torch.tensor([b0, b1, b0]), torch.tensor(
|
|
[1.0, a1, a2]
|
|
)
|
|
return cache[(cutoff_freq, sample_rate)]
|
|
|
|
|
|
def augment_audio(
|
|
clean: torch.Tensor,
|
|
sample_rate: int,
|
|
noise_files: list[Union[str, bytes, os.PathLike]],
|
|
ir_files: list[Union[str, bytes, os.PathLike]],
|
|
) -> torch.Tensor:
|
|
|
|
assert clean.size(0) == 1
|
|
n_samples = clean.size(1)
|
|
|
|
snr_candidates = [-20, -25, -30, -35, -40, -45]
|
|
|
|
original_clean_rms = clean.square().mean().sqrt_()
|
|
|
|
|
|
noise = get_noise(n_samples, sample_rate, noise_files)
|
|
signals = torch.cat([clean, noise])
|
|
|
|
|
|
signals = random_filter(signals)
|
|
|
|
|
|
if torch.rand(()) < 0.5:
|
|
ir_file = ir_files[torch.randint(0, len(ir_files), ())]
|
|
ir, sr = torchaudio.load(ir_file, backend="soundfile")
|
|
assert ir.size() == (2, sr), ir.size()
|
|
assert sr == sample_rate, (sr, sample_rate)
|
|
signals = convolve(signals, ir)
|
|
|
|
|
|
if torch.rand(()) < 0.2:
|
|
if signals.abs().max() > 0.8:
|
|
signals /= signals.abs().max() * 1.25
|
|
cutoff_freq_candidates = [2000, 3000, 4000, 6000]
|
|
cutoff_freq = cutoff_freq_candidates[
|
|
torch.randint(0, len(cutoff_freq_candidates), ())
|
|
]
|
|
b, a = get_butterworth_lpf(cutoff_freq, sample_rate)
|
|
signals = torchaudio.functional.lfilter(signals, a, b, clamp=False)
|
|
|
|
|
|
clean, noise = signals
|
|
clean_rms = clean.square().mean().sqrt_()
|
|
clean *= original_clean_rms / clean_rms
|
|
|
|
|
|
clean_level = clean.square().square_().mean().sqrt_().sqrt_()
|
|
noise_level = noise.square().square_().mean().sqrt_().sqrt_()
|
|
|
|
snr = snr_candidates[torch.randint(0, len(snr_candidates), ())]
|
|
|
|
noisy = clean + noise * (10.0 ** (snr / 20.0) * clean_level / (noise_level + 1e-5))
|
|
return noisy
|
|
|
|
|
|
class WavDataset(torch.utils.data.Dataset):
|
|
def __init__(
|
|
self,
|
|
audio_files: list[tuple[Path, int]],
|
|
in_sample_rate: int = 16000,
|
|
out_sample_rate: int = 24000,
|
|
wav_length: int = 4 * 24000,
|
|
segment_length: int = 100,
|
|
noise_files: Optional[list[Union[str, bytes, os.PathLike]]] = None,
|
|
ir_files: Optional[list[Union[str, bytes, os.PathLike]]] = None,
|
|
):
|
|
self.audio_files = audio_files
|
|
self.in_sample_rate = in_sample_rate
|
|
self.out_sample_rate = out_sample_rate
|
|
self.wav_length = wav_length
|
|
self.segment_length = segment_length
|
|
self.noise_files = noise_files
|
|
self.ir_files = ir_files
|
|
|
|
if (noise_files is None) is not (ir_files is None):
|
|
raise ValueError("noise_files and ir_files must be both None or not None")
|
|
|
|
self.in_hop_length = in_sample_rate // 100
|
|
self.out_hop_length = out_sample_rate // 100
|
|
|
|
def __getitem__(self, index: int) -> tuple[torch.Tensor, torch.Tensor, int, int]:
|
|
file, speaker_id = self.audio_files[index]
|
|
clean_wav, sample_rate = torchaudio.load(file, backend="soundfile")
|
|
|
|
formant_shift_candidates = [-2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0]
|
|
formant_shift = formant_shift_candidates[
|
|
torch.randint(0, len(formant_shift_candidates), ()).item()
|
|
]
|
|
|
|
resampler_fraction = Fraction(
|
|
sample_rate / self.out_sample_rate * 2.0 ** (formant_shift / 12.0)
|
|
).limit_denominator(300)
|
|
clean_wav = get_resampler(
|
|
resampler_fraction.numerator, resampler_fraction.denominator
|
|
)(clean_wav)
|
|
|
|
assert clean_wav.size(0) == 1
|
|
assert clean_wav.size(1) != 0
|
|
|
|
clean_wav = F.pad(clean_wav, (self.wav_length, self.wav_length))
|
|
|
|
if self.noise_files is None:
|
|
assert False
|
|
noisy_wav_16k = get_resampler(self.out_sample_rate, self.in_sample_rate)(
|
|
clean_wav
|
|
)
|
|
else:
|
|
clean_wav_16k = get_resampler(self.out_sample_rate, self.in_sample_rate)(
|
|
clean_wav
|
|
)
|
|
noisy_wav_16k = augment_audio(
|
|
clean_wav_16k, self.in_sample_rate, self.noise_files, self.ir_files
|
|
)
|
|
|
|
clean_wav = clean_wav.squeeze_(0)
|
|
noisy_wav_16k = noisy_wav_16k.squeeze_(0)
|
|
|
|
|
|
amplitude = torch.rand(()).item() * 0.899 + 0.1
|
|
factor = amplitude / clean_wav.abs().max()
|
|
clean_wav *= factor
|
|
noisy_wav_16k *= factor
|
|
while noisy_wav_16k.abs().max() >= 1.0:
|
|
clean_wav *= 0.5
|
|
noisy_wav_16k *= 0.5
|
|
|
|
return clean_wav, noisy_wav_16k, speaker_id, formant_shift
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.audio_files)
|
|
|
|
def collate(
|
|
self, batch: list[tuple[torch.Tensor, torch.Tensor, int, int]]
|
|
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
assert self.wav_length % self.out_hop_length == 0
|
|
length = self.wav_length // self.out_hop_length
|
|
clean_wavs = []
|
|
noisy_wavs = []
|
|
slice_starts = []
|
|
speaker_ids = []
|
|
formant_shifts = []
|
|
for clean_wav, noisy_wav, speaker_id, formant_shift in batch:
|
|
|
|
(voiced,) = clean_wav.nonzero(as_tuple=True)
|
|
assert voiced.numel() != 0
|
|
center = voiced[torch.randint(0, voiced.numel(), ()).item()].item()
|
|
|
|
slice_start = center - self.segment_length * self.out_hop_length // 2
|
|
assert slice_start >= 0
|
|
|
|
r = torch.randint(0, length - self.segment_length + 1, ()).item()
|
|
offset = slice_start - r * self.out_hop_length
|
|
clean_wavs.append(clean_wav[offset : offset + self.wav_length])
|
|
offset_in_sample_rate = int(
|
|
round(offset * self.in_sample_rate / self.out_sample_rate)
|
|
)
|
|
noisy_wavs.append(
|
|
noisy_wav[
|
|
offset_in_sample_rate : offset_in_sample_rate
|
|
+ length * self.in_hop_length
|
|
]
|
|
)
|
|
slice_start = r
|
|
slice_starts.append(slice_start)
|
|
speaker_ids.append(speaker_id)
|
|
formant_shifts.append(formant_shift)
|
|
clean_wavs = torch.stack(clean_wavs)
|
|
noisy_wavs = torch.stack(noisy_wavs)
|
|
slice_starts = torch.tensor(slice_starts)
|
|
speaker_ids = torch.tensor(speaker_ids)
|
|
formant_shifts = torch.tensor(formant_shifts)
|
|
return (
|
|
clean_wavs,
|
|
noisy_wavs,
|
|
slice_starts,
|
|
speaker_ids,
|
|
formant_shifts,
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AUDIO_FILE_SUFFIXES = {
|
|
".wav",
|
|
".aif",
|
|
".aiff",
|
|
".fla",
|
|
".flac",
|
|
".oga",
|
|
".ogg",
|
|
".opus",
|
|
".mp3",
|
|
}
|
|
|
|
|
|
def prepare_training():
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
print(f"device={device}")
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
(h, in_wav_dataset_dir, out_dir, resume) = (
|
|
prepare_training_configs_for_experiment
|
|
if is_notebook()
|
|
else prepare_training_configs
|
|
)()
|
|
|
|
print("config:")
|
|
pprint(h)
|
|
print()
|
|
h = AttrDict(h)
|
|
|
|
if not in_wav_dataset_dir.is_dir():
|
|
raise ValueError(f"{in_wav_dataset_dir} is not found.")
|
|
if resume:
|
|
latest_checkpoint_file = out_dir / "checkpoint_latest.pt"
|
|
if not latest_checkpoint_file.is_file():
|
|
raise ValueError(f"{latest_checkpoint_file} is not found.")
|
|
else:
|
|
if out_dir.is_dir():
|
|
if (out_dir / "checkpoint_latest.pt").is_file():
|
|
raise ValueError(
|
|
f"{out_dir / 'checkpoint_latest.pt'} already exists. "
|
|
"Please specify a different output directory, or use --resume option."
|
|
)
|
|
for file in out_dir.iterdir():
|
|
if file.suffix == ".pt":
|
|
raise ValueError(
|
|
f"{out_dir} already contains model files. "
|
|
"Please specify a different output directory."
|
|
)
|
|
else:
|
|
out_dir.mkdir(parents=True)
|
|
|
|
in_ir_wav_dir = repo_root() / h.in_ir_wav_dir
|
|
in_noise_wav_dir = repo_root() / h.in_noise_wav_dir
|
|
in_test_wav_dir = repo_root() / h.in_test_wav_dir
|
|
|
|
assert in_wav_dataset_dir.is_dir(), in_wav_dataset_dir
|
|
assert out_dir.is_dir(), out_dir
|
|
assert in_ir_wav_dir.is_dir(), in_ir_wav_dir
|
|
assert in_noise_wav_dir.is_dir(), in_noise_wav_dir
|
|
assert in_test_wav_dir.is_dir(), in_test_wav_dir
|
|
|
|
|
|
noise_files = sorted(
|
|
list(in_noise_wav_dir.rglob("*.wav")) + list(in_noise_wav_dir.rglob("*.flac"))
|
|
)
|
|
if len(noise_files) == 0:
|
|
raise ValueError(f"No audio data found in {in_noise_wav_dir}.")
|
|
ir_files = sorted(
|
|
list(in_ir_wav_dir.rglob("*.wav")) + list(in_ir_wav_dir.rglob("*.flac"))
|
|
)
|
|
if len(ir_files) == 0:
|
|
raise ValueError(f"No audio data found in {in_ir_wav_dir}.")
|
|
|
|
|
|
|
|
def get_training_filelist(in_wav_dataset_dir: Path):
|
|
min_data_per_speaker = 1
|
|
speakers: list[str] = []
|
|
training_filelist: list[tuple[Path, int]] = []
|
|
speaker_audio_files: list[list[Path]] = []
|
|
for speaker_dir in sorted(in_wav_dataset_dir.iterdir()):
|
|
if not speaker_dir.is_dir():
|
|
continue
|
|
candidates = []
|
|
for wav_file in sorted(speaker_dir.rglob("*")):
|
|
if (
|
|
not wav_file.is_file()
|
|
or wav_file.suffix.lower() not in AUDIO_FILE_SUFFIXES
|
|
):
|
|
continue
|
|
candidates.append(wav_file)
|
|
if len(candidates) >= min_data_per_speaker:
|
|
speaker_id = len(speakers)
|
|
speakers.append(speaker_dir.name)
|
|
training_filelist.extend([(file, speaker_id) for file in candidates])
|
|
speaker_audio_files.append(candidates)
|
|
return speakers, training_filelist, speaker_audio_files
|
|
|
|
speakers, training_filelist, speaker_audio_files = get_training_filelist(
|
|
in_wav_dataset_dir
|
|
)
|
|
n_speakers = len(speakers)
|
|
if n_speakers == 0:
|
|
raise ValueError(f"No speaker data found in {in_wav_dataset_dir}.")
|
|
print(f"{n_speakers=}")
|
|
for i, speaker in enumerate(speakers):
|
|
print(f" {i:{len(str(n_speakers - 1))}d}: {speaker}")
|
|
print()
|
|
print(f"{len(training_filelist)=}")
|
|
|
|
def get_test_filelist(
|
|
in_test_wav_dir: Path, n_speakers: int
|
|
) -> list[tuple[Path, list[int]]]:
|
|
max_n_test_files = 1000
|
|
test_filelist = []
|
|
rng = Random(42)
|
|
|
|
def get_target_id_generator():
|
|
if n_speakers > 8:
|
|
while True:
|
|
order = list(range(n_speakers))
|
|
rng.shuffle(order)
|
|
yield from order
|
|
else:
|
|
while True:
|
|
yield from range(n_speakers)
|
|
|
|
target_id_generator = get_target_id_generator()
|
|
for file in sorted(in_test_wav_dir.iterdir())[:max_n_test_files]:
|
|
if file.suffix.lower() not in AUDIO_FILE_SUFFIXES:
|
|
continue
|
|
target_ids = [next(target_id_generator) for _ in range(min(8, n_speakers))]
|
|
test_filelist.append((file, target_ids))
|
|
return test_filelist
|
|
|
|
test_filelist = get_test_filelist(in_test_wav_dir, n_speakers)
|
|
if len(test_filelist) == 0:
|
|
warnings.warn(f"No audio data found in {test_filelist}.")
|
|
print(f"{len(test_filelist)=}")
|
|
for file, target_ids in test_filelist[:12]:
|
|
print(f" {file}, {target_ids}")
|
|
if len(test_filelist) > 12:
|
|
print(" ...")
|
|
print()
|
|
|
|
|
|
|
|
training_dataset = WavDataset(
|
|
training_filelist,
|
|
in_sample_rate=h.in_sample_rate,
|
|
out_sample_rate=h.out_sample_rate,
|
|
wav_length=h.wav_length,
|
|
segment_length=h.segment_length,
|
|
noise_files=noise_files,
|
|
ir_files=ir_files,
|
|
)
|
|
training_loader = torch.utils.data.DataLoader(
|
|
training_dataset,
|
|
num_workers=min(h.num_workers, os.cpu_count()),
|
|
collate_fn=training_dataset.collate,
|
|
shuffle=True,
|
|
sampler=None,
|
|
batch_size=h.batch_size,
|
|
pin_memory=True,
|
|
drop_last=True,
|
|
)
|
|
|
|
print("Computing mean F0s of target speakers...", end="")
|
|
speaker_f0s = []
|
|
for speaker, files in enumerate(speaker_audio_files):
|
|
if len(files) > 10:
|
|
files = Random(42).sample(files, 10)
|
|
f0 = compute_mean_f0(files)
|
|
speaker_f0s.append(f0)
|
|
if speaker % 5 == 0:
|
|
print()
|
|
print(f" {speaker:3d}: {f0:.1f}Hz", end=",")
|
|
print()
|
|
print("Done.")
|
|
print("Computing pitch shifts for test files...")
|
|
test_pitch_shifts = []
|
|
source_f0s = []
|
|
for i, (file, target_ids) in enumerate(tqdm(test_filelist)):
|
|
source_f0 = compute_mean_f0([file], method="harvest")
|
|
source_f0s.append(source_f0)
|
|
if source_f0 != source_f0:
|
|
test_pitch_shifts.append([0] * len(target_ids))
|
|
continue
|
|
pitch_shifts = []
|
|
for target_id in target_ids:
|
|
target_f0 = speaker_f0s[target_id]
|
|
if target_f0 != target_f0:
|
|
pitch_shift = 0
|
|
else:
|
|
pitch_shift = int(round(12 * math.log2(target_f0 / source_f0)))
|
|
pitch_shifts.append(pitch_shift)
|
|
test_pitch_shifts.append(pitch_shifts)
|
|
print("Done.")
|
|
|
|
|
|
|
|
phone_extractor = PhoneExtractor().to(device).eval().requires_grad_(False)
|
|
phone_extractor_checkpoint = torch.load(
|
|
repo_root() / h.phone_extractor_file, map_location="cpu"
|
|
)
|
|
print(
|
|
phone_extractor.load_state_dict(phone_extractor_checkpoint["phone_extractor"])
|
|
)
|
|
del phone_extractor_checkpoint
|
|
|
|
pitch_estimator = PitchEstimator().to(device).eval().requires_grad_(False)
|
|
pitch_estimator_checkpoint = torch.load(
|
|
repo_root() / h.pitch_estimator_file, map_location="cpu"
|
|
)
|
|
print(
|
|
pitch_estimator.load_state_dict(pitch_estimator_checkpoint["pitch_estimator"])
|
|
)
|
|
del pitch_estimator_checkpoint
|
|
|
|
net_g = ConverterNetwork(
|
|
phone_extractor,
|
|
pitch_estimator,
|
|
n_speakers,
|
|
h.hidden_channels,
|
|
).to(device)
|
|
net_d = MultiPeriodDiscriminator(san=h.san).to(device)
|
|
|
|
optim_g = torch.optim.AdamW(
|
|
net_g.parameters(),
|
|
h.learning_rate,
|
|
betas=h.adam_betas,
|
|
eps=h.adam_eps,
|
|
)
|
|
optim_d = torch.optim.AdamW(
|
|
net_d.parameters(),
|
|
h.learning_rate,
|
|
betas=h.adam_betas,
|
|
eps=h.adam_eps,
|
|
)
|
|
|
|
grad_scaler = torch.cuda.amp.GradScaler(enabled=h.use_amp)
|
|
grad_balancer = GradBalancer(
|
|
weights={
|
|
"loss_mel": h.grad_weight_mel,
|
|
"loss_adv": h.grad_weight_adv,
|
|
"loss_fm": h.grad_weight_fm,
|
|
},
|
|
ema_decay=h.grad_balancer_ema_decay,
|
|
)
|
|
resample_to_in_sample_rate = torchaudio.transforms.Resample(
|
|
h.out_sample_rate, h.in_sample_rate
|
|
).to(device)
|
|
|
|
|
|
|
|
initial_iteration = 0
|
|
if resume:
|
|
checkpoint_file = latest_checkpoint_file
|
|
elif h.pretrained_file is not None:
|
|
checkpoint_file = repo_root() / h.pretrained_file
|
|
else:
|
|
checkpoint_file = None
|
|
if checkpoint_file is not None:
|
|
checkpoint = torch.load(checkpoint_file, map_location="cpu")
|
|
if not resume:
|
|
checkpoint_n_speakers = len(checkpoint["net_g"]["embed_speaker.weight"])
|
|
initial_speaker_embedding = checkpoint["net_g"]["embed_speaker.weight"][:1]
|
|
|
|
|
|
|
|
if True:
|
|
|
|
checkpoint["net_g"]["embed_speaker.weight"] = initial_speaker_embedding[
|
|
[0] * n_speakers
|
|
]
|
|
else:
|
|
assert n_speakers > checkpoint_n_speakers
|
|
print(
|
|
f"embed_speaker.weight was padded: {checkpoint_n_speakers} -> {n_speakers}"
|
|
)
|
|
checkpoint["net_g"]["embed_speaker.weight"] = F.pad(
|
|
checkpoint["net_g"]["embed_speaker.weight"],
|
|
(0, 0, 0, n_speakers - checkpoint_n_speakers),
|
|
)
|
|
checkpoint["net_g"]["embed_speaker.weight"][
|
|
checkpoint_n_speakers:
|
|
] = initial_speaker_embedding
|
|
print(net_g.load_state_dict(checkpoint["net_g"], strict=False))
|
|
print(net_d.load_state_dict(checkpoint["net_d"], strict=False))
|
|
if resume:
|
|
optim_g.load_state_dict(checkpoint["optim_g"])
|
|
optim_d.load_state_dict(checkpoint["optim_d"])
|
|
initial_iteration = checkpoint["iteration"]
|
|
grad_balancer.load_state_dict(checkpoint["grad_balancer"])
|
|
grad_scaler.load_state_dict(checkpoint["grad_scaler"])
|
|
|
|
|
|
|
|
def get_cosine_annealing_warmup_scheduler(
|
|
optimizer: torch.optim.Optimizer,
|
|
warmup_epochs: int,
|
|
total_epochs: int,
|
|
min_learning_rate: float,
|
|
) -> torch.optim.lr_scheduler.LambdaLR:
|
|
lr_ratio = min_learning_rate / optimizer.param_groups[0]["lr"]
|
|
m = 0.5 * (1.0 - lr_ratio)
|
|
a = 0.5 * (1.0 + lr_ratio)
|
|
|
|
def lr_lambda(current_epoch: int) -> float:
|
|
if current_epoch < warmup_epochs:
|
|
return current_epoch / warmup_epochs
|
|
elif current_epoch < total_epochs:
|
|
rate = (current_epoch - warmup_epochs) / (total_epochs - warmup_epochs)
|
|
return math.cos(rate * math.pi) * m + a
|
|
else:
|
|
return min_learning_rate
|
|
|
|
return torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
|
|
|
|
scheduler_g = get_cosine_annealing_warmup_scheduler(
|
|
optim_g, h.warmup_steps, h.n_steps, h.min_learning_rate
|
|
)
|
|
scheduler_d = get_cosine_annealing_warmup_scheduler(
|
|
optim_d, h.warmup_steps, h.n_steps, h.min_learning_rate
|
|
)
|
|
for _ in range(initial_iteration + 1):
|
|
scheduler_g.step()
|
|
scheduler_d.step()
|
|
|
|
net_g.train()
|
|
net_d.train()
|
|
|
|
|
|
|
|
dict_scalars = defaultdict(list)
|
|
quality_tester = QualityTester().eval().to(device)
|
|
writer = SummaryWriter(out_dir)
|
|
writer.add_text(
|
|
"log",
|
|
f"start training w/ {torch.cuda.get_device_name(device) if torch.cuda.is_available() else 'cpu'}.",
|
|
initial_iteration,
|
|
)
|
|
if not resume:
|
|
with open(out_dir / "config.json", "w", encoding="utf-8") as f:
|
|
json.dump(dict(h), f, indent=4)
|
|
if not is_notebook():
|
|
shutil.copy(__file__, out_dir)
|
|
|
|
return (
|
|
device,
|
|
in_wav_dataset_dir,
|
|
h,
|
|
out_dir,
|
|
speakers,
|
|
test_filelist,
|
|
training_loader,
|
|
speaker_f0s,
|
|
test_pitch_shifts,
|
|
phone_extractor,
|
|
pitch_estimator,
|
|
net_g,
|
|
net_d,
|
|
optim_g,
|
|
optim_d,
|
|
grad_scaler,
|
|
grad_balancer,
|
|
resample_to_in_sample_rate,
|
|
initial_iteration,
|
|
scheduler_g,
|
|
scheduler_d,
|
|
dict_scalars,
|
|
quality_tester,
|
|
writer,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
(
|
|
device,
|
|
in_wav_dataset_dir,
|
|
h,
|
|
out_dir,
|
|
speakers,
|
|
test_filelist,
|
|
training_loader,
|
|
speaker_f0s,
|
|
test_pitch_shifts,
|
|
phone_extractor,
|
|
pitch_estimator,
|
|
net_g,
|
|
net_d,
|
|
optim_g,
|
|
optim_d,
|
|
grad_scaler,
|
|
grad_balancer,
|
|
resample_to_in_sample_rate,
|
|
initial_iteration,
|
|
scheduler_g,
|
|
scheduler_d,
|
|
dict_scalars,
|
|
quality_tester,
|
|
writer,
|
|
) = prepare_training()
|
|
|
|
|
|
|
|
for iteration in tqdm(range(initial_iteration, h.n_steps)):
|
|
|
|
try:
|
|
batch = next(data_iter)
|
|
except:
|
|
data_iter = iter(training_loader)
|
|
batch = next(data_iter)
|
|
(
|
|
clean_wavs,
|
|
noisy_wavs_16k,
|
|
slice_starts,
|
|
speaker_ids,
|
|
formant_shift_semitone,
|
|
) = map(lambda x: x.to(device, non_blocking=True), batch)
|
|
|
|
|
|
|
|
with torch.cuda.amp.autocast(h.use_amp):
|
|
|
|
y, y_hat, y_hat_for_backward, loss_mel = net_g.forward_and_compute_loss(
|
|
noisy_wavs_16k[:, None, :],
|
|
speaker_ids,
|
|
formant_shift_semitone,
|
|
slice_start_indices=slice_starts,
|
|
slice_segment_length=h.segment_length,
|
|
y_all=clean_wavs[:, None, :],
|
|
)
|
|
assert y_hat.isfinite().all()
|
|
assert loss_mel.isfinite().all()
|
|
|
|
|
|
loss_discriminator, discriminator_d_stats = (
|
|
net_d.forward_and_compute_discriminator_loss(y, y_hat.detach())
|
|
)
|
|
|
|
optim_d.zero_grad()
|
|
grad_scaler.scale(loss_discriminator).backward()
|
|
grad_scaler.unscale_(optim_d)
|
|
grad_norm_d, d_grad_norm_stats = compute_grad_norm(net_d, True)
|
|
grad_scaler.step(optim_d)
|
|
|
|
|
|
|
|
with torch.cuda.amp.autocast(h.use_amp):
|
|
|
|
loss_adv, loss_fm, discriminator_g_stats = (
|
|
net_d.forward_and_compute_generator_loss(y, y_hat)
|
|
)
|
|
|
|
optim_g.zero_grad()
|
|
gradient_balancer_stats = grad_balancer.backward(
|
|
{
|
|
"loss_mel": loss_mel,
|
|
"loss_adv": loss_adv,
|
|
"loss_fm": loss_fm,
|
|
},
|
|
y_hat_for_backward,
|
|
grad_scaler,
|
|
skip_update_ema=iteration > 10 and iteration % 5 != 0,
|
|
)
|
|
grad_scaler.unscale_(optim_g)
|
|
grad_norm_g, g_grad_norm_stats = compute_grad_norm(net_g, True)
|
|
grad_scaler.step(optim_g)
|
|
grad_scaler.update()
|
|
|
|
|
|
|
|
dict_scalars["loss_g/loss_mel"].append(loss_mel.item())
|
|
dict_scalars["loss_g/loss_fm"].append(loss_fm.item())
|
|
dict_scalars["loss_g/loss_adv"].append(loss_adv.item())
|
|
dict_scalars["other/grad_scale"].append(grad_scaler.get_scale())
|
|
dict_scalars["loss_d/loss_discriminator"].append(loss_discriminator.item())
|
|
if math.isfinite(grad_norm_d):
|
|
dict_scalars["other/gradient_norm_d"].append(grad_norm_d)
|
|
for name, value in d_grad_norm_stats.items():
|
|
dict_scalars[f"~gradient_norm_d/{name}"].append(value)
|
|
if math.isfinite(grad_norm_g):
|
|
dict_scalars["other/gradient_norm_g"].append(grad_norm_g)
|
|
for name, value in g_grad_norm_stats.items():
|
|
dict_scalars[f"~gradient_norm_g/{name}"].append(value)
|
|
dict_scalars["other/lr_g"].append(scheduler_g.get_last_lr()[0])
|
|
dict_scalars["other/lr_d"].append(scheduler_d.get_last_lr()[0])
|
|
for k, v in discriminator_d_stats.items():
|
|
dict_scalars[f"~loss_discriminator/{k}"].append(v)
|
|
for k, v in discriminator_g_stats.items():
|
|
dict_scalars[f"~loss_discriminator/{k}"].append(v)
|
|
for k, v in gradient_balancer_stats.items():
|
|
dict_scalars[f"~gradient_balancer/{k}"].append(v)
|
|
|
|
if (iteration + 1) % 1000 == 0 or iteration == 0:
|
|
for name, scalars in dict_scalars.items():
|
|
if scalars:
|
|
writer.add_scalar(name, sum(scalars) / len(scalars), iteration + 1)
|
|
scalars.clear()
|
|
|
|
|
|
if (iteration + 1) % 50000 == 0 or iteration + 1 in {
|
|
1,
|
|
5000,
|
|
10000,
|
|
30000,
|
|
h.n_steps,
|
|
}:
|
|
net_g.eval()
|
|
torch.cuda.empty_cache()
|
|
|
|
dict_qualities_all = defaultdict(list)
|
|
n_added_wavs = 0
|
|
with torch.inference_mode():
|
|
for i, ((file, target_ids), pitch_shift_semitones) in enumerate(
|
|
zip(test_filelist, test_pitch_shifts)
|
|
):
|
|
source_wav, sr = torchaudio.load(file, backend="soundfile")
|
|
source_wav = source_wav.to(device)
|
|
if sr != h.in_sample_rate:
|
|
source_wav = get_resampler(sr, h.in_sample_rate, device)(
|
|
source_wav
|
|
)
|
|
source_wav = source_wav.to(device)
|
|
original_source_wav_length = source_wav.size(1)
|
|
|
|
if source_wav.size(1) % h.in_sample_rate == 0:
|
|
padded_source_wav = source_wav
|
|
else:
|
|
padded_source_wav = F.pad(
|
|
source_wav,
|
|
(
|
|
0,
|
|
h.in_sample_rate
|
|
- source_wav.size(1) % h.in_sample_rate,
|
|
),
|
|
)
|
|
converted = net_g(
|
|
padded_source_wav[[0] * len(target_ids), None],
|
|
torch.tensor(target_ids, device=device),
|
|
torch.tensor(
|
|
[0.0] * len(target_ids), device=device
|
|
),
|
|
torch.tensor(
|
|
[float(p) for p in pitch_shift_semitones], device=device
|
|
),
|
|
).squeeze_(1)[:, : original_source_wav_length // 160 * 240]
|
|
if i < 12:
|
|
if iteration == 0:
|
|
writer.add_audio(
|
|
f"source/y_{i:02d}",
|
|
source_wav,
|
|
iteration + 1,
|
|
h.in_sample_rate,
|
|
)
|
|
for d in range(
|
|
min(len(target_ids), 1 + (12 - i - 1) // len(test_filelist))
|
|
):
|
|
idx_in_batch = n_added_wavs % len(target_ids)
|
|
writer.add_audio(
|
|
f"converted/y_hat_{i:02d}_{target_ids[idx_in_batch]:03d}_{pitch_shift_semitones[idx_in_batch]:+02d}",
|
|
converted[idx_in_batch],
|
|
iteration + 1,
|
|
h.out_sample_rate,
|
|
)
|
|
n_added_wavs += 1
|
|
converted = resample_to_in_sample_rate(converted)
|
|
quality = quality_tester.test(converted, source_wav)
|
|
for metric_name, values in quality.items():
|
|
dict_qualities_all[metric_name].extend(values)
|
|
assert n_added_wavs == min(
|
|
12, len(test_filelist) * len(test_filelist[0][1])
|
|
), (
|
|
n_added_wavs,
|
|
len(test_filelist),
|
|
len(speakers),
|
|
len(test_filelist[0][1]),
|
|
)
|
|
dict_qualities = {
|
|
metric_name: sum(values) / len(values)
|
|
for metric_name, values in dict_qualities_all.items()
|
|
if len(values)
|
|
}
|
|
for metric_name, value in dict_qualities.items():
|
|
writer.add_scalar(f"validation/{metric_name}", value, iteration + 1)
|
|
for metric_name, values in dict_qualities_all.items():
|
|
for i, value in enumerate(values):
|
|
writer.add_scalar(
|
|
f"~validation_{metric_name}/{i:03d}", value, iteration + 1
|
|
)
|
|
del dict_qualities, dict_qualities_all
|
|
|
|
gc.collect()
|
|
net_g.train()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
if (iteration + 1) % 50000 == 0 or iteration + 1 in {
|
|
1,
|
|
5000,
|
|
10000,
|
|
30000,
|
|
h.n_steps,
|
|
}:
|
|
|
|
name = f"{in_wav_dataset_dir.name}_{iteration + 1:08d}"
|
|
checkpoint_file_save = out_dir / f"checkpoint_{name}.pt"
|
|
if checkpoint_file_save.exists():
|
|
checkpoint_file_save = checkpoint_file_save.with_name(
|
|
f"{checkpoint_file_save.name}_{hash(None):x}"
|
|
)
|
|
torch.save(
|
|
{
|
|
"iteration": iteration + 1,
|
|
"net_g": net_g.state_dict(),
|
|
"phone_extractor": phone_extractor.state_dict(),
|
|
"pitch_estimator": pitch_estimator.state_dict(),
|
|
"net_d": net_d.state_dict(),
|
|
"optim_g": optim_g.state_dict(),
|
|
"optim_d": optim_d.state_dict(),
|
|
"grad_balancer": grad_balancer.state_dict(),
|
|
"grad_scaler": grad_scaler.state_dict(),
|
|
"h": dict(h),
|
|
},
|
|
checkpoint_file_save,
|
|
)
|
|
shutil.copy(checkpoint_file_save, out_dir / "checkpoint_latest.pt")
|
|
|
|
|
|
paraphernalia_dir = out_dir / f"paraphernalia_{name}"
|
|
if paraphernalia_dir.exists():
|
|
paraphernalia_dir = paraphernalia_dir.with_name(
|
|
f"{paraphernalia_dir.name}_{hash(None):x}"
|
|
)
|
|
paraphernalia_dir.mkdir()
|
|
phone_extractor_fp16 = PhoneExtractor()
|
|
phone_extractor_fp16.load_state_dict(phone_extractor.state_dict())
|
|
phone_extractor_fp16.remove_weight_norm()
|
|
phone_extractor_fp16.merge_weights()
|
|
phone_extractor_fp16.half()
|
|
phone_extractor_fp16.dump(paraphernalia_dir / f"phone_extractor.bin")
|
|
del phone_extractor_fp16
|
|
pitch_estimator_fp16 = PitchEstimator()
|
|
pitch_estimator_fp16.load_state_dict(pitch_estimator.state_dict())
|
|
pitch_estimator_fp16.merge_weights()
|
|
pitch_estimator_fp16.half()
|
|
pitch_estimator_fp16.dump(paraphernalia_dir / f"pitch_estimator.bin")
|
|
del pitch_estimator_fp16
|
|
net_g_fp16 = ConverterNetwork(
|
|
nn.Module(), nn.Module(), len(speakers), h.hidden_channels
|
|
)
|
|
net_g_fp16.load_state_dict(net_g.state_dict())
|
|
net_g_fp16.remove_weight_norm()
|
|
net_g_fp16.merge_weights()
|
|
net_g_fp16.half()
|
|
net_g_fp16.dump(paraphernalia_dir / f"waveform_generator.bin")
|
|
with open(paraphernalia_dir / f"speaker_embeddings.bin", "wb") as f:
|
|
dump_layer(net_g_fp16.embed_speaker, f)
|
|
with open(paraphernalia_dir / f"formant_shift_embeddings.bin", "wb") as f:
|
|
dump_layer(net_g_fp16.embed_formant_shift, f)
|
|
del net_g_fp16
|
|
shutil.copy(repo_root() / "assets/images/noimage.png", paraphernalia_dir)
|
|
with open(
|
|
paraphernalia_dir / f"beatrice_paraphernalia_{name}.toml",
|
|
"w",
|
|
encoding="utf-8",
|
|
) as f:
|
|
f.write(
|
|
f'''[model]
|
|
version = "{PARAPHERNALIA_VERSION}"
|
|
name = "{name}"
|
|
description = """
|
|
No description for this model.
|
|
このモデルの説明はありません。
|
|
"""
|
|
'''
|
|
)
|
|
for speaker_id, (speaker, speaker_f0) in enumerate(
|
|
zip(speakers, speaker_f0s)
|
|
):
|
|
average_pitch = 69.0 + 12.0 * math.log2(speaker_f0 / 440.0)
|
|
average_pitch = round(average_pitch * 8.0) / 8.0
|
|
f.write(
|
|
f'''
|
|
[voice.{speaker_id}]
|
|
name = "{speaker}"
|
|
description = """
|
|
No description for this voice.
|
|
この声の説明はありません。
|
|
"""
|
|
average_pitch = {average_pitch}
|
|
|
|
[voice.{speaker_id}.portrait]
|
|
path = "noimage.png"
|
|
description = """
|
|
"""
|
|
'''
|
|
)
|
|
del paraphernalia_dir
|
|
|
|
|
|
|
|
|
|
scheduler_g.step()
|
|
scheduler_d.step()
|
|
|
|
|
|
print("Training finished.")
|
|
|