Update handler.py
Browse files- handler.py +21 -8
handler.py
CHANGED
@@ -4,15 +4,18 @@ from PIL import Image
|
|
4 |
import io
|
5 |
import base64
|
6 |
import requests
|
|
|
7 |
|
8 |
class EndpointHandler():
|
9 |
def __init__(self, path=""):
|
10 |
self.processor = AutoProcessor.from_pretrained(path)
|
11 |
-
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
|
|
12 |
|
13 |
def __call__(self, data: Any) -> Dict[str, Any]:
|
14 |
image_input = data.get('image')
|
15 |
-
text_input = data.get('text', "Describe this image.")
|
16 |
|
17 |
if image_input is None:
|
18 |
return {"error": "No image provided."}
|
@@ -26,27 +29,37 @@ class EndpointHandler():
|
|
26 |
except Exception as e:
|
27 |
return {"error": f"Failed to process the image. Details: {str(e)}"}
|
28 |
|
29 |
-
|
30 |
{
|
31 |
"role": "user",
|
32 |
"content": [
|
33 |
-
{"type": "image"
|
34 |
{"type": "text", "text": text_input},
|
35 |
],
|
36 |
}
|
37 |
]
|
38 |
|
39 |
-
|
|
|
|
|
|
|
40 |
inputs = self.processor(
|
41 |
-
text=[
|
42 |
images=[image],
|
43 |
padding=True,
|
44 |
return_tensors="pt",
|
45 |
)
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
output_text = self.processor.batch_decode(
|
49 |
-
|
50 |
)[0]
|
51 |
|
52 |
return {"generated_text": output_text}
|
|
|
4 |
import io
|
5 |
import base64
|
6 |
import requests
|
7 |
+
import torch
|
8 |
|
9 |
class EndpointHandler():
|
10 |
def __init__(self, path=""):
|
11 |
self.processor = AutoProcessor.from_pretrained(path)
|
12 |
+
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
13 |
+
path, device_map="auto"
|
14 |
+
)
|
15 |
|
16 |
def __call__(self, data: Any) -> Dict[str, Any]:
|
17 |
image_input = data.get('image')
|
18 |
+
text_input = data.get('text', "Describe this image.")
|
19 |
|
20 |
if image_input is None:
|
21 |
return {"error": "No image provided."}
|
|
|
29 |
except Exception as e:
|
30 |
return {"error": f"Failed to process the image. Details: {str(e)}"}
|
31 |
|
32 |
+
conversation = [
|
33 |
{
|
34 |
"role": "user",
|
35 |
"content": [
|
36 |
+
{"type": "image"},
|
37 |
{"type": "text", "text": text_input},
|
38 |
],
|
39 |
}
|
40 |
]
|
41 |
|
42 |
+
text_prompt = self.processor.apply_chat_template(
|
43 |
+
conversation, add_generation_prompt=True
|
44 |
+
)
|
45 |
+
|
46 |
inputs = self.processor(
|
47 |
+
text=[text_prompt],
|
48 |
images=[image],
|
49 |
padding=True,
|
50 |
return_tensors="pt",
|
51 |
)
|
52 |
|
53 |
+
inputs = inputs.to(self.model.device)
|
54 |
+
|
55 |
+
output_ids = self.model.generate(**inputs, max_new_tokens=128)
|
56 |
+
|
57 |
+
generated_ids = [
|
58 |
+
output_id[len(input_id):] for input_id, output_id in zip(inputs.input_ids, output_ids)
|
59 |
+
]
|
60 |
+
|
61 |
output_text = self.processor.batch_decode(
|
62 |
+
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
63 |
)[0]
|
64 |
|
65 |
return {"generated_text": output_text}
|