|
--- |
|
base_model: google/gemma-2-2b-it |
|
library_name: peft |
|
license: gemma |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: Gemma-2-2B_task-3_60-samples_config-1_auto |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Gemma-2-2B_task-3_60-samples_config-1_auto |
|
|
|
This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8173 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 3.0596 | 0.8696 | 5 | 2.9978 | |
|
| 2.455 | 1.9130 | 11 | 1.6209 | |
|
| 1.032 | 2.9565 | 17 | 0.7399 | |
|
| 0.4025 | 4.0 | 23 | 0.4877 | |
|
| 0.2824 | 4.8696 | 28 | 0.4448 | |
|
| 0.2665 | 5.9130 | 34 | 0.4216 | |
|
| 0.209 | 6.9565 | 40 | 0.4002 | |
|
| 0.2776 | 8.0 | 46 | 0.3994 | |
|
| 0.1608 | 8.8696 | 51 | 0.4351 | |
|
| 0.1258 | 9.9130 | 57 | 0.5196 | |
|
| 0.0748 | 10.9565 | 63 | 0.6227 | |
|
| 0.0581 | 12.0 | 69 | 0.7061 | |
|
| 0.0281 | 12.8696 | 74 | 0.7658 | |
|
| 0.0178 | 13.9130 | 80 | 0.7745 | |
|
| 0.006 | 14.9565 | 86 | 0.8173 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |