File size: 6,227 Bytes
b40afb9
c69c613
 
 
81b557e
c69c613
 
81b557e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b40afb9
c69c613
 
 
886af96
 
 
 
 
 
c69c613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81b557e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
language:
- en
- zh
license: apache-2.0
library_name: transformers
widget:
- text: <s> [|User|] Hi 👋  </s>[|Assistant|]
model-index:
- name: MiniChat-1.5-3B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 46.5
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 68.28
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 46.67
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 50.71
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.04
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 24.18
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B
      name: Open LLM Leaderboard
---

## MiniChat-1.5-3B

📑 [arXiv](https://arxiv.org/abs/2311.07052) | 👻 [GitHub](https://github.com/GeneZC/MiniMA) | 🤗 [HuggingFace-MiniMA](https://huggingface.co/GeneZC/MiniMA-3B) | 🤗 [HuggingFace-MiniChat](https://huggingface.co/GeneZC/MiniChat-3B) | 🤗 [HuggingFace-MiniChat-1.5](https://huggingface.co/GeneZC/MiniChat-1.5-3B) | 🤖 [ModelScope-MiniMA](https://modelscope.cn/models/GeneZC/MiniMA-3B) | 🤖 [ModelScope-MiniChat](https://modelscope.cn/models/GeneZC/MiniChat-3B)

🆕 **Updates from MiniChat-3B**: 
- better data mixture;
- use of [NEFTune](https://arxiv.org/abs/2310.05914);
- use of [DPO](https://arxiv.org/abs/2305.18290).

❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.

A language model distilled and finetuned from an adapted version of LLaMA2-7B following "Towards the Law of Capacity Gap in Distilling Language Models".

Outperforming a wide range of 3B competitors in GPT4 evaluation and even competing with several 7B chat models.

<img src="./teaser_b.jpg" alt="teaser_b" width="687" />

The following is an example code snippet to use MiniChat-3B:

```python
import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

from conversation import get_default_conv_template

# MiniChat
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-3B", use_fast=False)
# GPU.
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
# CPU.
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval()

conv = get_default_conv_template("minichat")

question = "Implement a program to find the common elements in two arrays without using any extra data structures."
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer([prompt]).input_ids
output_ids = model.generate(
    torch.as_tensor(input_ids).cuda(),
    do_sample=True,
    temperature=0.7,
    max_new_tokens=1024,
)
output_ids = output_ids[0][len(input_ids[0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# output: "def common_elements(arr1, arr2):\n    if len(arr1) == 0:\n        return []\n    if len(arr2) == 0:\n        return arr1\n\n    common_elements = []\n    for element in arr1:\n        if element in arr2:\n            common_elements.append(element)\n\n    return common_elements"
# Multiturn conversation could be realized by continuously appending questions to `conv`.
```

## Bibtex

```bibtex
@article{zhang2023law,
    title={Towards the Law of Capacity Gap in Distilling Language Models},
    author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
    year={2023},
    url={https://arxiv.org/abs/2311.07052}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_GeneZC__MiniChat-1.5-3B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |50.23|
|AI2 Reasoning Challenge (25-Shot)|46.50|
|HellaSwag (10-Shot)              |68.28|
|MMLU (5-Shot)                    |46.67|
|TruthfulQA (0-shot)              |50.71|
|Winogrande (5-shot)              |65.04|
|GSM8k (5-shot)                   |24.18|