|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" GeoV model configuration""" |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
GEOV_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"GeoV/GeoV-9b": "https://huggingface.co/GeoV/GeoV-9b/resolve/main/config.json", |
|
} |
|
|
|
|
|
class GeoVConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`GeoVModel`]. It is used to instantiate a |
|
GeoV model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the GeoV |
|
[GeoV/GeoV-9b](https://huggingface.co/GeoV/GeoV-9b) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 65536): |
|
Vocabulary size of the GeoV model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`GeoVModel`]. |
|
hidden_size (`int`, *optional*, defaults to 5120): |
|
Dimension of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 40): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 20480): |
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
rotary_emb_base (`int`, *optional*, defaults to 10000) |
|
base for computing rotary embeddings frequency |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-4): |
|
The epsilon used by the layer normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
use_extra_biases_ffn (`bool`, *optional*, defaults to `False`): |
|
Whether or not to have extra bias parameters in the final layer of FFN modules. |
|
Example: |
|
|
|
```python |
|
>>> from transformers import GeoVConfig, GeoVModel |
|
|
|
>>> # Initializing a GeoV configuration |
|
>>> configuration = GeoVConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the configuration |
|
>>> model = GeoVModel(configuration) # doctest: +SKIP |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config # doctest: +SKIP |
|
```""" |
|
model_type = "geov" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=65_536, |
|
hidden_size=5_120, |
|
num_hidden_layers=32, |
|
num_attention_heads=40, |
|
intermediate_size=1024 * 5 * 4, |
|
layer_norm_eps=1e-4, |
|
rotary_emb_base=10000, |
|
max_position_embeddings=2048, |
|
use_extra_biases_ffn=False, |
|
use_cache=True, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
tie_word_embeddings=False, |
|
tokenizer_class="GeoVTokenizer", |
|
**kwargs, |
|
): |
|
super().__init__( |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
tokenizer_class=tokenizer_class, |
|
**kwargs |
|
) |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.rotary_emb_base = rotary_emb_base |
|
self.use_cache = use_cache |
|
self.layer_norm_eps = layer_norm_eps |
|
self.use_extra_biases_ffn = use_extra_biases_ffn |
|
|