|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for GeoV.""" |
|
from pathlib import Path |
|
from typing import List, Optional, Tuple |
|
|
|
import sentencepiece as spm |
|
|
|
from transformers.tokenization_utils import PreTrainedTokenizer |
|
from transformers.utils import SPIECE_UNDERLINE, logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"GeoV/GeoV-9b": "https://huggingface.co/GeoV/GeoV-9b/resolve/main/spiece.model", |
|
} |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"GeoV-9b": 2048, |
|
} |
|
|
|
|
|
class GeoVTokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct an GeoV tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to |
|
this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that |
|
contains the vocabulary necessary to instantiate a tokenizer. |
|
bos_token (`str`, *optional*, defaults to `"<s>"`): |
|
The beginning of sequence token that was used during pretraining. |
|
|
|
eos_token (`str`, *optional*, defaults to `"</s>"`): |
|
The end of sequence token. |
|
|
|
unk_token (`str`, *optional*, defaults to `"<unk>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
|
|
new_line_token_id (`int`, *optional*, defaults to `65_499`): |
|
The token id of new line character. |
|
|
|
Attributes: |
|
sp_model (`SentencePieceProcessor`): |
|
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
unk_token="<unk>", |
|
new_line_token_id=65_499, |
|
**kwargs, |
|
) -> None: |
|
super().__init__( |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
new_line_token_id=new_line_token_id, |
|
**kwargs, |
|
) |
|
self.vocab_file = vocab_file |
|
self.new_line_token_id = new_line_token_id |
|
|
|
self.sp_model = spm.SentencePieceProcessor() |
|
self.sp_model.Load(vocab_file) |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.sp_model) |
|
|
|
def get_vocab(self): |
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def __getstate__(self): |
|
state = self.__dict__.copy() |
|
state["sp_model"] = None |
|
return state |
|
|
|
def __setstate__(self, d): |
|
self.__dict__ = d |
|
|
|
self.sp_model = spm.SentencePieceProcessor() |
|
self.sp_model.Load(self.vocab_file) |
|
|
|
def _tokenize(self, text: str) -> List[str]: |
|
"""Tokenize a string.""" |
|
ret = [] |
|
split_text = text.splitlines() |
|
for l in split_text: |
|
rl = self.sp_model.encode(l, out_type=str) |
|
ret.extend(rl) |
|
ret.append("\n") |
|
ret = ret[:-1] |
|
return ret |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
if token == "\n": |
|
return self.new_line_token_id |
|
return self.sp_model.PieceToId(token) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
if index == self.new_line_token_id: |
|
return "\n" |
|
return self.sp_model.IdToPiece(index) |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (strings for sub-words) in a single string.""" |
|
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() |
|
return out_string |
|
|
|
def _decode( |
|
self, |
|
token_ids: List[int], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: bool = True, |
|
spaces_between_special_tokens: bool = True, |
|
**kwargs, |
|
) -> str: |
|
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) |
|
|
|
if skip_special_tokens: |
|
filtered_tokens = [t for t in filtered_tokens if t not in self.all_special_ids] |
|
|
|
text = self.convert_tokens_to_string(filtered_tokens) |
|
|
|
if clean_up_tokenization_spaces: |
|
clean_text = self.clean_up_tokenization(text) |
|
return clean_text |
|
else: |
|
return text |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
save_directory = Path(save_directory) |
|
if not save_directory.is_dir(): |
|
raise ValueError(f"Vocabulary path ({save_directory}) should be a directory") |
|
vocab_fn = VOCAB_FILES_NAMES["vocab_file"] |
|
filename_prefix = f"{filename_prefix}-" if filename_prefix else "" |
|
|
|
vocab_file = save_directory / f"{filename_prefix}{vocab_fn}" |
|
|
|
with open(str(vocab_file), "wb") as fi: |
|
content_spiece_model = self.sp_model.serialized_model_proto() |
|
fi.write(content_spiece_model) |
|
|
|
return (str(vocab_file),) |
|
|