--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: output1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: nl split: test args: nl metrics: - name: Wer type: wer value: 5.895082837397793 --- # output1 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1310 - Wer: 5.8951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 12000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.138 | 0.08 | 1000 | 0.2101 | 11.5288 | | 0.121 | 0.17 | 2000 | 0.1987 | 10.4458 | | 0.1413 | 0.25 | 3000 | 0.1956 | 10.4672 | | 0.1158 | 0.33 | 4000 | 0.1778 | 9.3729 | | 0.1056 | 0.42 | 5000 | 0.1795 | 9.7792 | | 0.056 | 1.05 | 6000 | 0.1560 | 7.6927 | | 0.0323 | 1.14 | 7000 | 0.1460 | 7.1445 | | 0.0213 | 1.22 | 8000 | 0.1491 | 7.2844 | | 0.051 | 1.3 | 9000 | 0.1457 | 6.9587 | | 0.0196 | 1.39 | 10000 | 0.1420 | 6.6086 | | 0.019 | 2.02 | 11000 | 0.1303 | 6.0553 | | 0.0124 | 2.11 | 12000 | 0.1310 | 5.8951 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2