Training in progress, epoch 0
Browse files
.ipynb_checkpoints/Untitled-checkpoint.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
Logs/events.out.tfevents.1718384259.e29ec45d9208.134.10
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d5fbfb0e3d22e8d7b7e86191d233a05f497f4efe9d3d40170281b56d5ad1133
|
3 |
+
size 6094
|
Untitled.ipynb
CHANGED
@@ -429,7 +429,7 @@
|
|
429 |
{
|
430 |
"data": {
|
431 |
"application/vnd.jupyter.widget-view+json": {
|
432 |
-
"model_id": "
|
433 |
"version_major": 2,
|
434 |
"version_minor": 0
|
435 |
},
|
@@ -443,7 +443,7 @@
|
|
443 |
{
|
444 |
"data": {
|
445 |
"application/vnd.jupyter.widget-view+json": {
|
446 |
-
"model_id": "
|
447 |
"version_major": 2,
|
448 |
"version_minor": 0
|
449 |
},
|
@@ -486,8 +486,8 @@
|
|
486 |
"\n",
|
487 |
" <div>\n",
|
488 |
" \n",
|
489 |
-
" <progress value='
|
490 |
-
" [
|
491 |
" </div>\n",
|
492 |
" <table border=\"1\" class=\"dataframe\">\n",
|
493 |
" <thead>\n",
|
@@ -498,16 +498,6 @@
|
|
498 |
" </tr>\n",
|
499 |
" </thead>\n",
|
500 |
" <tbody>\n",
|
501 |
-
" <tr>\n",
|
502 |
-
" <td>0</td>\n",
|
503 |
-
" <td>3.360700</td>\n",
|
504 |
-
" <td>0.005133</td>\n",
|
505 |
-
" </tr>\n",
|
506 |
-
" <tr>\n",
|
507 |
-
" <td>2</td>\n",
|
508 |
-
" <td>0.003900</td>\n",
|
509 |
-
" <td>0.001245</td>\n",
|
510 |
-
" </tr>\n",
|
511 |
" </tbody>\n",
|
512 |
"</table><p>"
|
513 |
],
|
@@ -517,20 +507,6 @@
|
|
517 |
},
|
518 |
"metadata": {},
|
519 |
"output_type": "display_data"
|
520 |
-
},
|
521 |
-
{
|
522 |
-
"name": "stderr",
|
523 |
-
"output_type": "stream",
|
524 |
-
"text": [
|
525 |
-
"/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
|
526 |
-
" warnings.warn(\n",
|
527 |
-
"/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:31: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n",
|
528 |
-
" warnings.warn(\"None of the inputs have requires_grad=True. Gradients will be None\")\n",
|
529 |
-
"/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
|
530 |
-
" warnings.warn(\n",
|
531 |
-
"/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:31: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n",
|
532 |
-
" warnings.warn(\"None of the inputs have requires_grad=True. Gradients will be None\")\n"
|
533 |
-
]
|
534 |
}
|
535 |
],
|
536 |
"source": [
|
@@ -888,35 +864,27 @@
|
|
888 |
"source": [
|
889 |
"def ModelInference():\n",
|
890 |
"\n",
|
891 |
-
"
|
892 |
-
"
|
|
|
|
|
893 |
"\n",
|
894 |
"\n",
|
|
|
|
|
895 |
" InputImgTensor = Image.open(BytesIO(base64.b64decode(InputImg))).convert(\"RGB\")\n",
|
896 |
"\n",
|
897 |
-
"
|
898 |
"\n",
|
899 |
" device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
900 |
-
"
|
901 |
-
"\n",
|
902 |
-
"
|
903 |
-
"\n",
|
904 |
-
"
|
905 |
-
"\n",
|
906 |
-
"
|
907 |
-
"
|
908 |
-
" generated_ids = model.generate(**inputs, max_new_tokens=496)\n",
|
909 |
-
"\n",
|
910 |
-
" # Next we turn each predicted token ID back into a string using the decode method\n",
|
911 |
-
" # We chop of the prompt, which consists of image tokens and our text prompt\n",
|
912 |
-
" # image_token_index = model.config.image_token_index\n",
|
913 |
-
" # num_image_tokens = len(generated_ids[generated_ids == image_token_index])\n",
|
914 |
-
" # num_text_tokens = len(Processor.tokenizer.encode(InputTxt))\n",
|
915 |
-
" # num_prompt_tokens = num_image_tokens + num_text_tokens + 2\n",
|
916 |
-
" \n",
|
917 |
-
" generated_text = Processor.batch_decode(generated_ids, skip_special_tokens=True,\n",
|
918 |
-
" clean_up_tokenization_spaces=False)[0]\n",
|
919 |
-
" print(generated_text)"
|
920 |
]
|
921 |
},
|
922 |
{
|
|
|
429 |
{
|
430 |
"data": {
|
431 |
"application/vnd.jupyter.widget-view+json": {
|
432 |
+
"model_id": "cfa272f52f4a42629057b2566b4dd820",
|
433 |
"version_major": 2,
|
434 |
"version_minor": 0
|
435 |
},
|
|
|
443 |
{
|
444 |
"data": {
|
445 |
"application/vnd.jupyter.widget-view+json": {
|
446 |
+
"model_id": "f08e1f4a5ed443a6ae6378bf2be0d759",
|
447 |
"version_major": 2,
|
448 |
"version_minor": 0
|
449 |
},
|
|
|
486 |
"\n",
|
487 |
" <div>\n",
|
488 |
" \n",
|
489 |
+
" <progress value='129' max='645' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
490 |
+
" [129/645 28:55 < 1:57:29, 0.07 it/s, Epoch 0.99/5]\n",
|
491 |
" </div>\n",
|
492 |
" <table border=\"1\" class=\"dataframe\">\n",
|
493 |
" <thead>\n",
|
|
|
498 |
" </tr>\n",
|
499 |
" </thead>\n",
|
500 |
" <tbody>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
501 |
" </tbody>\n",
|
502 |
"</table><p>"
|
503 |
],
|
|
|
507 |
},
|
508 |
"metadata": {},
|
509 |
"output_type": "display_data"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
510 |
}
|
511 |
],
|
512 |
"source": [
|
|
|
864 |
"source": [
|
865 |
"def ModelInference():\n",
|
866 |
"\n",
|
867 |
+
" BaseModelID = \"google/paligemma-3b-pt-224\"\n",
|
868 |
+
" config = PeftConfig.from_pretrained(\"Geohunterr/ECG_FT_PG\")\n",
|
869 |
+
" BaseModel = AutoModelForPreTraining.from_pretrained(BaseModelID)\n",
|
870 |
+
" PeftFTModel = PeftModel.from_pretrained(BaseModel,\"Geohunterr/ECG_FT_PG\")\n",
|
871 |
"\n",
|
872 |
"\n",
|
873 |
+
" InputTxt = \"What is/are all the conditions that could be detected in this 12 Lead ECG ?\"\n",
|
874 |
+
" InputImg = TestBase64ECG119.replace(\"data:image/png;base64,\",\"\")\n",
|
875 |
" InputImgTensor = Image.open(BytesIO(base64.b64decode(InputImg))).convert(\"RGB\")\n",
|
876 |
"\n",
|
877 |
+
" Processor = PaliGemmaProcessor.from_pretrained(BaseModelID)\n",
|
878 |
"\n",
|
879 |
" device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
880 |
+
" Inputs = Processor(text=InputTxt,images=InputImgTensor,padding=\"longest\",do_convert_rgb=True,return_tensors=\"pt\").to(device)\n",
|
881 |
+
" PeftFTModel.to(device)\n",
|
882 |
+
" Inputs = Inputs.to(dtype=PeftFTModel.dtype)\n",
|
883 |
+
"\n",
|
884 |
+
" with torch.no_grad():\n",
|
885 |
+
" output = PeftFTModel.generate(**Inputs,max_length=496)\n",
|
886 |
+
"\n",
|
887 |
+
" print(Processor.decode(output[0],skip_special_tokens=True))"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
888 |
]
|
889 |
},
|
890 |
{
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 45258384
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dba10c88c9bd05f014aeb557d65dfd6a794c7c4b00e8b40e66701815b964d51
|
3 |
size 45258384
|