--- language: en tags: - ner - bert - mountain-ner - named-entity-recognition license: mit datasets: - NERetrieve - Few-NERD - mountain-ner-dataset metrics: - accuracy - f1 - precision - recall pipeline_tag: token-classification model-index: - name: mountain-ner-bert-base results: - task: type: token-classification name: Named Entity Recognition dataset: name: mountain-ner-dataset type: Gepe55o/mountain-ner-dataset metrics: - type: accuracy value: 0.9919 - type: f1 value: 0.9048 - type: precision value: 0.8899 - type: recall value: 0.9202 --- ## Model Description mountain-ner-bert-base is a fine-tuned model based on the BERT base architecture for mountain names Entity Recognition tasks. The model is trained on the merging of two datasets: [NERetrieve](https://arxiv.org/pdf/2310.14282), [Few-NERD](https://arxiv.org/pdf/2105.07464v6), [Mountain-ner-dataset](https://huggingface.co/datasets/Gepe55o/mountain-ner-dataset). The model is trained to recognize two types of entities: `LABEL_0` (other), `LABEL_1` (mountain names). - Model Architecture: BERT base - Task: mountain names entity recognition - Training Data: [mountain-ner-dataset](https://huggingface.co/datasets/Gepe55o/mountain-ner-dataset) ## Performance Metrics: | Epoch | Training Loss | Validation Loss | Accuracy | Precision | Recall | F1 | |-------|---------------|----------------|----------|-----------|----------|----------| | 1 | 0.027400 | 0.030793 | 0.988144 | 0.815692 | 0.924621 | 0.866748 | | 2 | 0.020600 | 0.024568 | 0.991119 | 0.872988 | 0.921036 | 0.896369 | | 3 | 0.012900 | 0.024072 | 0.991923 | 0.889878 | 0.920171 | 0.904771 | Best model performance achieved at epoch 3 with: - F1 Score: 0.9048 - Accuracy: 0.9919 - Precision: 0.8899 - Recall: 0.9202 ## How to use ```python from transformers import AutoModel, AutoTokenizer, pipeline model = AutoModel.from_pretrained("Gepe55o/mountain-ner-bert-base") tokenizer = AutoTokenizer.from_pretrained("Gepe55o/mountain-ner-bert-base") text = "Mount Everest is the highest mountain in the world." nlp = pipeline("ner", model=model, tokenizer=tokenizer) result = nlp(text) ```