File size: 4,260 Bytes
908e86b 43bb57d 908e86b 43bb57d 908e86b 43bb57d 908e86b 43bb57d 908e86b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
base_model: smanjil/German-MedBERT
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: German-MedBERT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# German-MedBERT
This model is a fine-tuned version of [smanjil/German-MedBERT](https://huggingface.co/smanjil/German-MedBERT) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5145
- F1: 0.4561
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.693 | 1.0 | 189 | 0.6754 | 0.0698 |
| 0.6853 | 2.0 | 378 | 0.6626 | 0.0339 |
| 0.6654 | 3.0 | 567 | 0.6499 | 0.0488 |
| 0.6562 | 4.0 | 756 | 0.6399 | 0.0541 |
| 0.6554 | 5.0 | 945 | 0.6335 | 0.0556 |
| 0.6394 | 6.0 | 1134 | 0.6260 | 0.0571 |
| 0.6452 | 7.0 | 1323 | 0.6220 | 0.0571 |
| 0.6257 | 8.0 | 1512 | 0.6161 | 0.0571 |
| 0.6334 | 9.0 | 1701 | 0.6117 | 0.0571 |
| 0.6302 | 10.0 | 1890 | 0.6068 | 0.0571 |
| 0.6151 | 11.0 | 2079 | 0.6011 | 0.0571 |
| 0.6121 | 12.0 | 2268 | 0.5961 | 0.0571 |
| 0.6097 | 13.0 | 2457 | 0.5915 | 0.0571 |
| 0.5929 | 14.0 | 2646 | 0.5865 | 0.0556 |
| 0.5955 | 15.0 | 2835 | 0.5822 | 0.0556 |
| 0.5893 | 16.0 | 3024 | 0.5776 | 0.1053 |
| 0.5936 | 17.0 | 3213 | 0.5731 | 0.1 |
| 0.5769 | 18.0 | 3402 | 0.5687 | 0.1 |
| 0.5692 | 19.0 | 3591 | 0.5646 | 0.1 |
| 0.5739 | 20.0 | 3780 | 0.5604 | 0.2326 |
| 0.5705 | 21.0 | 3969 | 0.5564 | 0.2326 |
| 0.5651 | 22.0 | 4158 | 0.5525 | 0.2727 |
| 0.5654 | 23.0 | 4347 | 0.5494 | 0.2727 |
| 0.5527 | 24.0 | 4536 | 0.5456 | 0.2727 |
| 0.5542 | 25.0 | 4725 | 0.5425 | 0.2727 |
| 0.5464 | 26.0 | 4914 | 0.5395 | 0.2727 |
| 0.5383 | 27.0 | 5103 | 0.5364 | 0.3111 |
| 0.5323 | 28.0 | 5292 | 0.5348 | 0.3111 |
| 0.5343 | 29.0 | 5481 | 0.5318 | 0.3404 |
| 0.5305 | 30.0 | 5670 | 0.5299 | 0.4082 |
| 0.5252 | 31.0 | 5859 | 0.5278 | 0.4 |
| 0.516 | 32.0 | 6048 | 0.5270 | 0.3922 |
| 0.5181 | 33.0 | 6237 | 0.5243 | 0.4231 |
| 0.5202 | 34.0 | 6426 | 0.5230 | 0.4231 |
| 0.5068 | 35.0 | 6615 | 0.5224 | 0.4231 |
| 0.514 | 36.0 | 6804 | 0.5205 | 0.4528 |
| 0.5014 | 37.0 | 6993 | 0.5194 | 0.4528 |
| 0.4899 | 38.0 | 7182 | 0.5188 | 0.4444 |
| 0.5104 | 39.0 | 7371 | 0.5164 | 0.4364 |
| 0.4823 | 40.0 | 7560 | 0.5174 | 0.4444 |
| 0.515 | 41.0 | 7749 | 0.5155 | 0.4364 |
| 0.4906 | 42.0 | 7938 | 0.5154 | 0.4364 |
| 0.4853 | 43.0 | 8127 | 0.5158 | 0.4364 |
| 0.5006 | 44.0 | 8316 | 0.5153 | 0.4364 |
| 0.503 | 45.0 | 8505 | 0.5146 | 0.4561 |
| 0.4915 | 46.0 | 8694 | 0.5141 | 0.4561 |
| 0.4903 | 47.0 | 8883 | 0.5144 | 0.4561 |
| 0.4892 | 48.0 | 9072 | 0.5146 | 0.4561 |
| 0.4939 | 49.0 | 9261 | 0.5146 | 0.4561 |
| 0.5007 | 50.0 | 9450 | 0.5145 | 0.4561 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.2
- Datasets 2.12.0
- Tokenizers 0.13.3
|