File size: 2,124 Bytes
776a96a
4c6463e
 
 
f8ee987
4c6463e
 
 
 
 
f8ee987
 
4c6463e
 
f8ee987
 
 
 
 
 
 
 
 
 
 
 
 
a6ca647
776a96a
 
4c6463e
 
776a96a
4c6463e
776a96a
4c6463e
f8ee987
a6ca647
 
776a96a
4c6463e
776a96a
4c6463e
776a96a
4c6463e
776a96a
4c6463e
776a96a
4c6463e
776a96a
4c6463e
776a96a
4c6463e
776a96a
4c6463e
776a96a
4c6463e
 
a6ca647
4c6463e
 
a6ca647
4c6463e
 
 
 
a6ca647
4c6463e
776a96a
4c6463e
776a96a
a6ca647
 
 
 
 
 
 
776a96a
 
4c6463e
776a96a
4c6463e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
language:
- ka
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- whisper
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
metrics:
- wer
model-index:
- name: Whisper Tiny Ka
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice
      type: mozilla-foundation/common_voice_16_1
      config: ka
      split: test
      args: ka
    metrics:
    - name: Wer
      type: wer
      value: 134.83959527973963
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny Ka

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice dataset.
It achieves the following results on the evaluation set:
- Loss: 5.0988
- Wer: 134.8396

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer      |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 5.0576        | 1.45  | 1000 | 5.1841          | 158.1475 |
| 4.6405        | 2.9   | 2000 | 4.8881          | 131.9237 |
| 4.0627        | 4.35  | 3000 | 4.9336          | 143.5772 |
| 3.781         | 5.8   | 4000 | 4.9113          | 129.0976 |
| 3.0831        | 7.25  | 5000 | 5.0988          | 134.8396 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.0.1+cu118
- Datasets 2.17.1
- Tokenizers 0.15.2