Upload DiffAE
Browse files- DiffAE.py +322 -0
- DiffAEConfig.py +54 -0
- DiffAE_diffusion_base.py +1109 -0
- DiffAE_diffusion_diffusion.py +160 -0
- DiffAE_diffusion_resample.py +63 -0
- DiffAE_model.py +7 -0
- DiffAE_model_blocks.py +569 -0
- DiffAE_model_latentnet.py +193 -0
- DiffAE_model_nn.py +138 -0
- DiffAE_model_unet.py +569 -0
- DiffAE_model_unet_autoenc.py +284 -0
- DiffAE_support.py +9 -0
- DiffAE_support_choices.py +179 -0
- DiffAE_support_config.py +438 -0
- DiffAE_support_config_base.py +72 -0
- DiffAE_support_dist_utils.py +42 -0
- DiffAE_support_metrics.py +357 -0
- DiffAE_support_renderer.py +62 -0
- DiffAE_support_templates.py +327 -0
- DiffAE_support_templates_latent.py +150 -0
- DiffAE_support_utils.py +33 -0
- config.json +34 -0
- model.safetensors +3 -0
DiffAE.py
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from pytorch_lightning.callbacks import *
|
6 |
+
from torch.optim.optimizer import Optimizer
|
7 |
+
|
8 |
+
from transformers import PreTrainedModel
|
9 |
+
|
10 |
+
from .DiffAEConfig import DiffAEConfig
|
11 |
+
from .DiffAE_support import *
|
12 |
+
|
13 |
+
class DiffAE(PreTrainedModel):
|
14 |
+
config_class = DiffAEConfig
|
15 |
+
def __init__(self, config):
|
16 |
+
super().__init__(config)
|
17 |
+
|
18 |
+
conf = ukbb_autoenc(n_latents=config.latent_dim)
|
19 |
+
conf.__dict__.update(**vars(config)) #update the supplied DiffAE params
|
20 |
+
|
21 |
+
if config.test_with_TEval:
|
22 |
+
conf.T_inv = conf.T_eval
|
23 |
+
conf.T_step = conf.T_eval
|
24 |
+
|
25 |
+
conf.fp16 = config.ampmode not in ["32", "32-true"]
|
26 |
+
|
27 |
+
conf.refresh_values()
|
28 |
+
conf.make_model_conf()
|
29 |
+
|
30 |
+
self.config = config
|
31 |
+
self.conf = conf
|
32 |
+
|
33 |
+
self.net = conf.make_model_conf().make_model()
|
34 |
+
self.ema_net = copy.deepcopy(self.net)
|
35 |
+
self.ema_net.requires_grad_(False)
|
36 |
+
self.ema_net.eval()
|
37 |
+
|
38 |
+
model_size = sum(param.data.nelement() for param in self.net.parameters())
|
39 |
+
print('Model params: %.2f M' % (model_size / 1024 / 1024))
|
40 |
+
|
41 |
+
self.sampler = conf.make_diffusion_conf().make_sampler()
|
42 |
+
self.eval_sampler = conf.make_eval_diffusion_conf().make_sampler()
|
43 |
+
|
44 |
+
# this is shared for both model and latent
|
45 |
+
self.T_sampler = conf.make_T_sampler()
|
46 |
+
|
47 |
+
if conf.train_mode.use_latent_net():
|
48 |
+
self.latent_sampler = conf.make_latent_diffusion_conf(
|
49 |
+
).make_sampler()
|
50 |
+
self.eval_latent_sampler = conf.make_latent_eval_diffusion_conf(
|
51 |
+
).make_sampler()
|
52 |
+
else:
|
53 |
+
self.latent_sampler = None
|
54 |
+
self.eval_latent_sampler = None
|
55 |
+
|
56 |
+
# initial variables for consistent sampling
|
57 |
+
self.register_buffer('x_T', torch.randn(conf.sample_size, conf.in_channels, *conf.input_shape))
|
58 |
+
|
59 |
+
if conf.pretrain is not None:
|
60 |
+
print(f'loading pretrain ... {conf.pretrain.name}')
|
61 |
+
state = torch.load(conf.pretrain.path, map_location='cpu')
|
62 |
+
print('step:', state['global_step'])
|
63 |
+
self.load_state_dict(state['state_dict'], strict=False)
|
64 |
+
|
65 |
+
if conf.latent_infer_path is not None:
|
66 |
+
print('loading latent stats ...')
|
67 |
+
state = torch.load(conf.latent_infer_path)
|
68 |
+
self.conds = state['conds']
|
69 |
+
self.register_buffer('conds_mean', state['conds_mean'][None, :])
|
70 |
+
self.register_buffer('conds_std', state['conds_std'][None, :])
|
71 |
+
else:
|
72 |
+
self.conds_mean = None
|
73 |
+
self.conds_std = None
|
74 |
+
|
75 |
+
def normalise(self, cond):
|
76 |
+
cond = (cond - self.conds_mean.to(self.device)) / self.conds_std.to(
|
77 |
+
self.device)
|
78 |
+
return cond
|
79 |
+
|
80 |
+
def denormalise(self, cond):
|
81 |
+
cond = (cond * self.conds_std.to(self.device)) + self.conds_mean.to(
|
82 |
+
self.device)
|
83 |
+
return cond
|
84 |
+
|
85 |
+
def sample(self, N, device, T=None, T_latent=None):
|
86 |
+
if T is None:
|
87 |
+
sampler = self.eval_sampler
|
88 |
+
latent_sampler = self.latent_sampler
|
89 |
+
else:
|
90 |
+
sampler = self.conf._make_diffusion_conf(T).make_sampler()
|
91 |
+
latent_sampler = self.conf._make_latent_diffusion_conf(T_latent).make_sampler()
|
92 |
+
|
93 |
+
noise = torch.randn(N,
|
94 |
+
self.conf.in_channels,
|
95 |
+
*self.conf.input_shape,
|
96 |
+
device=device)
|
97 |
+
pred_img = render_uncondition(
|
98 |
+
self.conf,
|
99 |
+
self.ema_net,
|
100 |
+
noise,
|
101 |
+
sampler=sampler,
|
102 |
+
latent_sampler=latent_sampler,
|
103 |
+
conds_mean=self.conds_mean,
|
104 |
+
conds_std=self.conds_std,
|
105 |
+
)
|
106 |
+
pred_img = (pred_img + 1) / 2
|
107 |
+
return pred_img
|
108 |
+
|
109 |
+
def render(self, noise, cond=None, T=None, use_ema=True):
|
110 |
+
if T is None:
|
111 |
+
sampler = self.eval_sampler
|
112 |
+
else:
|
113 |
+
sampler = self.conf._make_diffusion_conf(T).make_sampler()
|
114 |
+
|
115 |
+
if cond is not None:
|
116 |
+
pred_img = render_condition(self.conf,
|
117 |
+
self.ema_net if use_ema else self.net,
|
118 |
+
noise,
|
119 |
+
sampler=sampler,
|
120 |
+
cond=cond)
|
121 |
+
else:
|
122 |
+
pred_img = render_uncondition(self.conf,
|
123 |
+
self.ema_net if use_ema else self.net,
|
124 |
+
noise,
|
125 |
+
sampler=sampler,
|
126 |
+
latent_sampler=None)
|
127 |
+
pred_img = (pred_img + 1) / 2
|
128 |
+
return pred_img
|
129 |
+
|
130 |
+
def encode(self, x, use_ema=True):
|
131 |
+
assert self.conf.model_type.has_autoenc()
|
132 |
+
return self.ema_net.encoder.forward(x) if use_ema else self.net.encoder.forward(x)
|
133 |
+
|
134 |
+
def encode_stochastic(self, x, cond, T=None, use_ema=True):
|
135 |
+
if T is None:
|
136 |
+
sampler = self.eval_sampler
|
137 |
+
else:
|
138 |
+
sampler = self.conf._make_diffusion_conf(T).make_sampler()
|
139 |
+
out = sampler.ddim_reverse_sample_loop(self.ema_net if use_ema else self.net,
|
140 |
+
x,
|
141 |
+
model_kwargs={'cond': cond})
|
142 |
+
return out['sample']
|
143 |
+
|
144 |
+
def forward(self, x_start=None, noise=None, ema_model: bool = False):
|
145 |
+
with amp.autocast(False):
|
146 |
+
model = self.ema_net if ema_model else self.net
|
147 |
+
return self.eval_sampler.sample(
|
148 |
+
model=model,
|
149 |
+
noise=noise,
|
150 |
+
x_start=x_start,
|
151 |
+
shape=noise.shape if noise is not None else x_start.shape,
|
152 |
+
)
|
153 |
+
|
154 |
+
def is_last_accum(self, batch_idx):
|
155 |
+
"""
|
156 |
+
is it the last gradient accumulation loop?
|
157 |
+
used with gradient_accum > 1 and to see if the optimizer will perform "step" in this iteration or not
|
158 |
+
"""
|
159 |
+
return (batch_idx + 1) % self.conf.accum_batches == 0
|
160 |
+
|
161 |
+
def training_step(self, batch, batch_idx):
|
162 |
+
"""
|
163 |
+
given an input, calculate the loss function
|
164 |
+
no optimization at this stage.
|
165 |
+
"""
|
166 |
+
with amp.autocast(False):
|
167 |
+
# forward
|
168 |
+
if self.conf.train_mode.require_dataset_infer():
|
169 |
+
# this mode as pre-calculated cond
|
170 |
+
cond = batch[0]
|
171 |
+
if self.conf.latent_znormalize:
|
172 |
+
cond = (cond - self.conds_mean.to(
|
173 |
+
self.device)) / self.conds_std.to(self.device)
|
174 |
+
else:
|
175 |
+
imgs, idxs = batch['inp']['data'], batch_idx
|
176 |
+
# print(f'(rank {self.global_rank}) batch size:', len(imgs))
|
177 |
+
x_start = imgs
|
178 |
+
|
179 |
+
if self.conf.train_mode == TrainMode.diffusion:
|
180 |
+
"""
|
181 |
+
main training mode!!!
|
182 |
+
"""
|
183 |
+
# with numpy seed we have the problem that the sample t's are related!
|
184 |
+
t, weight = self.T_sampler.sample(len(x_start), x_start.device)
|
185 |
+
losses = self.sampler.training_losses(model=self.net,
|
186 |
+
x_start=x_start,
|
187 |
+
t=t)
|
188 |
+
elif self.conf.train_mode.is_latent_diffusion():
|
189 |
+
"""
|
190 |
+
training the latent variables!
|
191 |
+
"""
|
192 |
+
# diffusion on the latent
|
193 |
+
t, weight = self.T_sampler.sample(len(cond), cond.device)
|
194 |
+
latent_losses = self.latent_sampler.training_losses(
|
195 |
+
model=self.net.latent_net, x_start=cond, t=t)
|
196 |
+
# train only do the latent diffusion
|
197 |
+
losses = {
|
198 |
+
'latent': latent_losses['loss'],
|
199 |
+
'loss': latent_losses['loss']
|
200 |
+
}
|
201 |
+
else:
|
202 |
+
raise NotImplementedError()
|
203 |
+
|
204 |
+
loss = losses['loss'].mean()
|
205 |
+
loss_dict = {"train_loss": loss}
|
206 |
+
for key in ['vae', 'latent', 'mmd', 'chamfer', 'arg_cnt']:
|
207 |
+
if key in losses:
|
208 |
+
loss_dict[f'train_{key}'] = losses[key].mean()
|
209 |
+
self.log_dict(loss_dict, on_step=True, on_epoch=True, reduce_fx="mean", sync_dist=True, batch_size=batch['inp']['data'].shape[0])
|
210 |
+
|
211 |
+
return loss
|
212 |
+
|
213 |
+
def on_train_batch_end(self, outputs, batch, batch_idx: int) -> None:
|
214 |
+
"""
|
215 |
+
after each training step ...
|
216 |
+
"""
|
217 |
+
if self.is_last_accum(batch_idx):
|
218 |
+
# only apply ema on the last gradient accumulation step,
|
219 |
+
# if it is the iteration that has optimizer.step()
|
220 |
+
if self.conf.train_mode == TrainMode.latent_diffusion:
|
221 |
+
# it trains only the latent hence change only the latent
|
222 |
+
ema(self.net.latent_net, self.ema_net.latent_net,
|
223 |
+
self.conf.ema_decay)
|
224 |
+
else:
|
225 |
+
ema(self.net, self.ema_net, self.conf.ema_decay)
|
226 |
+
|
227 |
+
def on_before_optimizer_step(self, optimizer: Optimizer) -> None:
|
228 |
+
# fix the fp16 + clip grad norm problem with pytorch lightinng
|
229 |
+
# this is the currently correct way to do it
|
230 |
+
if self.conf.grad_clip > 0:
|
231 |
+
# from trainer.params_grads import grads_norm, iter_opt_params
|
232 |
+
params = [
|
233 |
+
p for group in optimizer.param_groups for p in group['params']
|
234 |
+
]
|
235 |
+
# print('before:', grads_norm(iter_opt_params(optimizer)))
|
236 |
+
torch.nn.utils.clip_grad_norm_(params,
|
237 |
+
max_norm=self.conf.grad_clip)
|
238 |
+
# print('after:', grads_norm(iter_opt_params(optimizer)))
|
239 |
+
|
240 |
+
#Validation
|
241 |
+
def validation_step(self, batch, batch_idx):
|
242 |
+
_, prediction_ema = self.inference_pass(batch['inp']['data'], T_inv=self.conf.T_eval, T_step=self.conf.T_eval, use_ema=True)
|
243 |
+
_, prediction_base = self.inference_pass(batch['inp']['data'], T_inv=self.conf.T_eval, T_step=self.conf.T_eval, use_ema=False)
|
244 |
+
|
245 |
+
inp = batch['inp']['data'].cpu()
|
246 |
+
inp = (inp + 1) / 2
|
247 |
+
|
248 |
+
_, val_ssim_ema = self._eval_prediction(inp, prediction_ema)
|
249 |
+
_, val_ssim_base = self._eval_prediction(inp, prediction_base)
|
250 |
+
|
251 |
+
self.log_dict({"val_ssim_ema": val_ssim_ema, "val_ssim_base": val_ssim_base, "val_loss": -val_ssim_ema}, on_step=True, on_epoch=True, reduce_fx="mean", sync_dist=True, batch_size=batch['inp']['data'].shape[0])
|
252 |
+
self.img_logger("val_ema", batch_idx, inp, prediction_ema)
|
253 |
+
self.img_logger("val_base", batch_idx, inp, prediction_base)
|
254 |
+
|
255 |
+
def _eval_prediction(self, inp, prediction):
|
256 |
+
prediction = prediction.detach().cpu()
|
257 |
+
prediction = prediction.numpy() if prediction.dtype not in {torch.bfloat16, torch.float16} else prediction.to(dtype=torch.float32).numpy()
|
258 |
+
if self.config.grey2RGB in [0, 2]:
|
259 |
+
inp = inp[:, 1, ...].unsqueeze(1)
|
260 |
+
prediction = np.expand_dims(prediction[:, 1, ...], axis=1)
|
261 |
+
val_ssim = getSSIM(inp.numpy(), prediction, data_range=1)
|
262 |
+
return prediction, val_ssim
|
263 |
+
|
264 |
+
def inference_pass(self, inp, T_inv, T_step, use_ema=True):
|
265 |
+
semantic_latent = self.encode(inp, use_ema=use_ema)
|
266 |
+
if self.config.test_emb_only:
|
267 |
+
return semantic_latent, None
|
268 |
+
stochastic_latent = self.encode_stochastic(inp, semantic_latent, T=T_inv)
|
269 |
+
prediction = self.render(stochastic_latent, semantic_latent, T=T_step, use_ema=use_ema)
|
270 |
+
return semantic_latent, prediction
|
271 |
+
|
272 |
+
# Testing
|
273 |
+
def test_step(self, batch, batch_idx):
|
274 |
+
emb, recon = self.inference_pass(batch['inp']['data'], T_inv=self.conf.T_inv, T_step=self.conf.T_step, use_ema=self.config.test_ema)
|
275 |
+
|
276 |
+
emb = emb.detach().cpu()
|
277 |
+
emb = emb.numpy() if emb.dtype not in {torch.bfloat16, torch.float16} else emb.to(dtype=torch.float32).numpy()
|
278 |
+
|
279 |
+
return emb, recon
|
280 |
+
|
281 |
+
#Prediction
|
282 |
+
def predict_step(self, batch, batch_idx):
|
283 |
+
emb = self.encode(batch['inp']['data']).detach().cpu()
|
284 |
+
return emb.numpy() if emb.dtype not in {torch.bfloat16, torch.float16} else emb.to(dtype=torch.float32).numpy()
|
285 |
+
|
286 |
+
def configure_optimizers(self):
|
287 |
+
if self.conf.optimizer == OptimizerType.adam:
|
288 |
+
optim = torch.optim.Adam(self.net.parameters(),
|
289 |
+
lr=self.conf.lr,
|
290 |
+
weight_decay=self.conf.weight_decay)
|
291 |
+
elif self.conf.optimizer == OptimizerType.adamw:
|
292 |
+
optim = torch.optim.AdamW(self.net.parameters(),
|
293 |
+
lr=self.conf.lr,
|
294 |
+
weight_decay=self.conf.weight_decay)
|
295 |
+
else:
|
296 |
+
raise NotImplementedError()
|
297 |
+
out = {'optimizer': optim}
|
298 |
+
if self.conf.warmup > 0:
|
299 |
+
sched = torch.optim.lr_scheduler.LambdaLR(optim,
|
300 |
+
lr_lambda=WarmupLR(
|
301 |
+
self.conf.warmup))
|
302 |
+
out['lr_scheduler'] = {
|
303 |
+
'scheduler': sched,
|
304 |
+
'interval': 'step',
|
305 |
+
}
|
306 |
+
return out
|
307 |
+
|
308 |
+
def split_tensor(self, x):
|
309 |
+
"""
|
310 |
+
extract the tensor for a corresponding "worker" in the batch dimension
|
311 |
+
|
312 |
+
Args:
|
313 |
+
x: (n, c)
|
314 |
+
|
315 |
+
Returns: x: (n_local, c)
|
316 |
+
"""
|
317 |
+
n = len(x)
|
318 |
+
rank = self.global_rank
|
319 |
+
world_size = get_world_size()
|
320 |
+
# print(f'rank: {rank}/{world_size}')
|
321 |
+
per_rank = n // world_size
|
322 |
+
return x[rank * per_rank:(rank + 1) * per_rank]
|
DiffAEConfig.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class DiffAEConfig(PretrainedConfig):
|
4 |
+
model_type = "DiffAE"
|
5 |
+
def __init__(self,
|
6 |
+
is3D=True,
|
7 |
+
in_channels=1,
|
8 |
+
out_channels=1,
|
9 |
+
latent_dim=128,
|
10 |
+
net_ch=32,
|
11 |
+
sample_every_batches=1000, #log samples during training. Set it to 0 to disable
|
12 |
+
sample_size=4, #Number of samples in the buffer for consistent sampling (batch size of x_T)
|
13 |
+
test_with_TEval=True,
|
14 |
+
ampmode="16-mixed",
|
15 |
+
grey2RGB=-1,
|
16 |
+
test_emb_only=True,
|
17 |
+
test_ema=True,
|
18 |
+
batch_size=9,
|
19 |
+
# beta_scheduler='linear',
|
20 |
+
# latent_beta_scheduler='linear',
|
21 |
+
data_name="ukbb",
|
22 |
+
diffusion_type = 'beatgans',
|
23 |
+
# eval_ema_every_samples = 200_000,
|
24 |
+
# eval_every_samples = 200_000,
|
25 |
+
lr=0.0001,
|
26 |
+
# net_beatgans_attn_head = 1,
|
27 |
+
# net_beatgans_embed_channels = 128,
|
28 |
+
# net_ch_mult = (1, 1, 2, 3, 4),
|
29 |
+
# T_eval = 20,
|
30 |
+
# latent_T_eval=1000,
|
31 |
+
# group_norm_limit=32,
|
32 |
+
seed=1701,
|
33 |
+
input_shape=(50, 128, 128),
|
34 |
+
# dropout=0.1,
|
35 |
+
**kwargs):
|
36 |
+
self.is3D = is3D
|
37 |
+
self.in_channels = in_channels
|
38 |
+
self.out_channels = out_channels
|
39 |
+
self.latent_dim = latent_dim
|
40 |
+
self.net_ch = net_ch
|
41 |
+
self.sample_every_batches = sample_every_batches
|
42 |
+
self.sample_size = sample_size
|
43 |
+
self.test_with_TEval = test_with_TEval
|
44 |
+
self.ampmode = ampmode
|
45 |
+
self.grey2RGB = grey2RGB
|
46 |
+
self.test_emb_only = test_emb_only
|
47 |
+
self.test_ema = test_ema
|
48 |
+
self.batch_size = batch_size
|
49 |
+
self.data_name = data_name
|
50 |
+
self.diffusion_type = diffusion_type
|
51 |
+
self.lr = lr
|
52 |
+
self.seed = seed
|
53 |
+
self.input_shape = input_shape
|
54 |
+
super().__init__(**kwargs)
|
DiffAE_diffusion_base.py
ADDED
@@ -0,0 +1,1109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This code started out as a PyTorch port of Ho et al's diffusion models:
|
3 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py
|
4 |
+
|
5 |
+
Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from .DiffAE_model_unet_autoenc import AutoencReturn
|
9 |
+
from .DiffAE_support_config_base import BaseConfig
|
10 |
+
import enum
|
11 |
+
import math
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import torch as th
|
15 |
+
from .DiffAE_model import *
|
16 |
+
from .DiffAE_model_nn import mean_flat
|
17 |
+
from typing import NamedTuple, Tuple
|
18 |
+
from .DiffAE_support_choices import *
|
19 |
+
from torch.cuda.amp import autocast
|
20 |
+
import torch.nn.functional as F
|
21 |
+
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class GaussianDiffusionBeatGansConfig(BaseConfig):
|
27 |
+
gen_type: GenerativeType
|
28 |
+
betas: Tuple[float]
|
29 |
+
model_type: ModelType
|
30 |
+
model_mean_type: ModelMeanType
|
31 |
+
model_var_type: ModelVarType
|
32 |
+
loss_type: LossType
|
33 |
+
rescale_timesteps: bool
|
34 |
+
fp16: bool
|
35 |
+
train_pred_xstart_detach: bool = True
|
36 |
+
|
37 |
+
def make_sampler(self):
|
38 |
+
return GaussianDiffusionBeatGans(self)
|
39 |
+
|
40 |
+
|
41 |
+
class GaussianDiffusionBeatGans:
|
42 |
+
"""
|
43 |
+
Utilities for training and sampling diffusion models.
|
44 |
+
|
45 |
+
Ported directly from here, and then adapted over time to further experimentation.
|
46 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
|
47 |
+
|
48 |
+
:param betas: a 1-D numpy array of betas for each diffusion timestep,
|
49 |
+
starting at T and going to 1.
|
50 |
+
:param model_mean_type: a ModelMeanType determining what the model outputs.
|
51 |
+
:param model_var_type: a ModelVarType determining how variance is output.
|
52 |
+
:param loss_type: a LossType determining the loss function to use.
|
53 |
+
:param rescale_timesteps: if True, pass floating point timesteps into the
|
54 |
+
model so that they are always scaled like in the
|
55 |
+
original paper (0 to 1000).
|
56 |
+
"""
|
57 |
+
def __init__(self, conf: GaussianDiffusionBeatGansConfig):
|
58 |
+
self.conf = conf
|
59 |
+
self.model_mean_type = conf.model_mean_type
|
60 |
+
self.model_var_type = conf.model_var_type
|
61 |
+
self.loss_type = conf.loss_type
|
62 |
+
self.rescale_timesteps = conf.rescale_timesteps
|
63 |
+
|
64 |
+
# Use float64 for accuracy.
|
65 |
+
betas = np.array(conf.betas, dtype=np.float64)
|
66 |
+
self.betas = betas
|
67 |
+
assert len(betas.shape) == 1, "betas must be 1-D"
|
68 |
+
assert (betas > 0).all() and (betas <= 1).all()
|
69 |
+
|
70 |
+
self.num_timesteps = int(betas.shape[0])
|
71 |
+
|
72 |
+
alphas = 1.0 - betas
|
73 |
+
self.alphas_cumprod = np.cumprod(alphas, axis=0)
|
74 |
+
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
|
75 |
+
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
|
76 |
+
assert self.alphas_cumprod_prev.shape == (self.num_timesteps, )
|
77 |
+
|
78 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
79 |
+
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
|
80 |
+
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
|
81 |
+
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
|
82 |
+
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
|
83 |
+
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod -
|
84 |
+
1)
|
85 |
+
|
86 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
87 |
+
self.posterior_variance = (betas * (1.0 - self.alphas_cumprod_prev) /
|
88 |
+
(1.0 - self.alphas_cumprod))
|
89 |
+
# log calculation clipped because the posterior variance is 0 at the
|
90 |
+
# beginning of the diffusion chain.
|
91 |
+
self.posterior_log_variance_clipped = np.log(
|
92 |
+
np.append(self.posterior_variance[1], self.posterior_variance[1:]))
|
93 |
+
self.posterior_mean_coef1 = (betas *
|
94 |
+
np.sqrt(self.alphas_cumprod_prev) /
|
95 |
+
(1.0 - self.alphas_cumprod))
|
96 |
+
self.posterior_mean_coef2 = ((1.0 - self.alphas_cumprod_prev) *
|
97 |
+
np.sqrt(alphas) /
|
98 |
+
(1.0 - self.alphas_cumprod))
|
99 |
+
|
100 |
+
def training_losses(self,
|
101 |
+
model: Model,
|
102 |
+
x_start: th.Tensor,
|
103 |
+
t: th.Tensor,
|
104 |
+
model_kwargs=None,
|
105 |
+
noise: th.Tensor = None):
|
106 |
+
"""
|
107 |
+
Compute training losses for a single timestep.
|
108 |
+
|
109 |
+
:param model: the model to evaluate loss on.
|
110 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
111 |
+
:param t: a batch of timestep indices.
|
112 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
113 |
+
pass to the model. This can be used for conditioning.
|
114 |
+
:param noise: if specified, the specific Gaussian noise to try to remove.
|
115 |
+
:return: a dict with the key "loss" containing a tensor of shape [N].
|
116 |
+
Some mean or variance settings may also have other keys.
|
117 |
+
"""
|
118 |
+
if model_kwargs is None:
|
119 |
+
model_kwargs = {}
|
120 |
+
if noise is None:
|
121 |
+
noise = th.randn_like(x_start)
|
122 |
+
|
123 |
+
x_t = self.q_sample(x_start, t, noise=noise)
|
124 |
+
|
125 |
+
terms = {'x_t': x_t}
|
126 |
+
|
127 |
+
if self.loss_type in [
|
128 |
+
LossType.mse,
|
129 |
+
LossType.l1,
|
130 |
+
]:
|
131 |
+
with autocast(self.conf.fp16):
|
132 |
+
# x_t is static wrt. to the diffusion process
|
133 |
+
model_forward = model.forward(x=x_t.detach(),
|
134 |
+
t=self._scale_timesteps(t),
|
135 |
+
x_start=x_start.detach(),
|
136 |
+
**model_kwargs)
|
137 |
+
model_output = model_forward.pred
|
138 |
+
|
139 |
+
_model_output = model_output
|
140 |
+
if self.conf.train_pred_xstart_detach:
|
141 |
+
_model_output = _model_output.detach()
|
142 |
+
# get the pred xstart
|
143 |
+
p_mean_var = self.p_mean_variance(
|
144 |
+
model=DummyModel(pred=_model_output),
|
145 |
+
# gradient goes through x_t
|
146 |
+
x=x_t,
|
147 |
+
t=t,
|
148 |
+
clip_denoised=False)
|
149 |
+
terms['pred_xstart'] = p_mean_var['pred_xstart']
|
150 |
+
|
151 |
+
# model_output = model(x_t, self._scale_timesteps(t), **model_kwargs)
|
152 |
+
|
153 |
+
target_types = {
|
154 |
+
ModelMeanType.eps: noise,
|
155 |
+
}
|
156 |
+
target = target_types[self.model_mean_type]
|
157 |
+
assert model_output.shape == target.shape == x_start.shape
|
158 |
+
|
159 |
+
if self.loss_type == LossType.mse:
|
160 |
+
if self.model_mean_type == ModelMeanType.eps:
|
161 |
+
# (n, c, h, w) => (n, )
|
162 |
+
terms["mse"] = mean_flat((target - model_output)**2)
|
163 |
+
else:
|
164 |
+
raise NotImplementedError()
|
165 |
+
elif self.loss_type == LossType.l1:
|
166 |
+
# (n, c, h, w) => (n, )
|
167 |
+
terms["mse"] = mean_flat((target - model_output).abs())
|
168 |
+
else:
|
169 |
+
raise NotImplementedError()
|
170 |
+
|
171 |
+
if "vb" in terms:
|
172 |
+
# if learning the variance also use the vlb loss
|
173 |
+
terms["loss"] = terms["mse"] + terms["vb"]
|
174 |
+
else:
|
175 |
+
terms["loss"] = terms["mse"]
|
176 |
+
else:
|
177 |
+
raise NotImplementedError(self.loss_type)
|
178 |
+
|
179 |
+
return terms
|
180 |
+
|
181 |
+
def sample(self,
|
182 |
+
model: Model,
|
183 |
+
shape=None,
|
184 |
+
noise=None,
|
185 |
+
cond=None,
|
186 |
+
x_start=None,
|
187 |
+
clip_denoised=True,
|
188 |
+
model_kwargs=None,
|
189 |
+
progress=False):
|
190 |
+
"""
|
191 |
+
Args:
|
192 |
+
x_start: given for the autoencoder
|
193 |
+
"""
|
194 |
+
if model_kwargs is None:
|
195 |
+
model_kwargs = {}
|
196 |
+
if self.conf.model_type.has_autoenc():
|
197 |
+
model_kwargs['x_start'] = x_start
|
198 |
+
model_kwargs['cond'] = cond
|
199 |
+
|
200 |
+
if self.conf.gen_type == GenerativeType.ddpm:
|
201 |
+
return self.p_sample_loop(model,
|
202 |
+
shape=shape,
|
203 |
+
noise=noise,
|
204 |
+
clip_denoised=clip_denoised,
|
205 |
+
model_kwargs=model_kwargs,
|
206 |
+
progress=progress)
|
207 |
+
elif self.conf.gen_type == GenerativeType.ddim:
|
208 |
+
return self.ddim_sample_loop(model,
|
209 |
+
shape=shape,
|
210 |
+
noise=noise,
|
211 |
+
clip_denoised=clip_denoised,
|
212 |
+
model_kwargs=model_kwargs,
|
213 |
+
progress=progress)
|
214 |
+
else:
|
215 |
+
raise NotImplementedError()
|
216 |
+
|
217 |
+
def q_mean_variance(self, x_start, t):
|
218 |
+
"""
|
219 |
+
Get the distribution q(x_t | x_0).
|
220 |
+
|
221 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
222 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
223 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
224 |
+
"""
|
225 |
+
mean = (
|
226 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) *
|
227 |
+
x_start)
|
228 |
+
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t,
|
229 |
+
x_start.shape)
|
230 |
+
log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod,
|
231 |
+
t, x_start.shape)
|
232 |
+
return mean, variance, log_variance
|
233 |
+
|
234 |
+
def q_sample(self, x_start, t, noise=None):
|
235 |
+
"""
|
236 |
+
Diffuse the data for a given number of diffusion steps.
|
237 |
+
|
238 |
+
In other words, sample from q(x_t | x_0).
|
239 |
+
|
240 |
+
:param x_start: the initial data batch.
|
241 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
242 |
+
:param noise: if specified, the split-out normal noise.
|
243 |
+
:return: A noisy version of x_start.
|
244 |
+
"""
|
245 |
+
if noise is None:
|
246 |
+
noise = th.randn_like(x_start)
|
247 |
+
assert noise.shape == x_start.shape
|
248 |
+
return (
|
249 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) *
|
250 |
+
x_start + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod,
|
251 |
+
t, x_start.shape) * noise)
|
252 |
+
|
253 |
+
def q_posterior_mean_variance(self, x_start, x_t, t):
|
254 |
+
"""
|
255 |
+
Compute the mean and variance of the diffusion posterior:
|
256 |
+
|
257 |
+
q(x_{t-1} | x_t, x_0)
|
258 |
+
|
259 |
+
"""
|
260 |
+
assert x_start.shape == x_t.shape
|
261 |
+
posterior_mean = (
|
262 |
+
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) *
|
263 |
+
x_start +
|
264 |
+
_extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) *
|
265 |
+
x_t)
|
266 |
+
posterior_variance = _extract_into_tensor(self.posterior_variance, t,
|
267 |
+
x_t.shape)
|
268 |
+
posterior_log_variance_clipped = _extract_into_tensor(
|
269 |
+
self.posterior_log_variance_clipped, t, x_t.shape)
|
270 |
+
assert (posterior_mean.shape[0] == posterior_variance.shape[0] ==
|
271 |
+
posterior_log_variance_clipped.shape[0] == x_start.shape[0])
|
272 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
273 |
+
|
274 |
+
def p_mean_variance(self,
|
275 |
+
model: Model,
|
276 |
+
x,
|
277 |
+
t,
|
278 |
+
clip_denoised=True,
|
279 |
+
denoised_fn=None,
|
280 |
+
model_kwargs=None):
|
281 |
+
"""
|
282 |
+
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
|
283 |
+
the initial x, x_0.
|
284 |
+
|
285 |
+
:param model: the model, which takes a signal and a batch of timesteps
|
286 |
+
as input.
|
287 |
+
:param x: the [N x C x ...] tensor at time t.
|
288 |
+
:param t: a 1-D Tensor of timesteps.
|
289 |
+
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
|
290 |
+
:param denoised_fn: if not None, a function which applies to the
|
291 |
+
x_start prediction before it is used to sample. Applies before
|
292 |
+
clip_denoised.
|
293 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
294 |
+
pass to the model. This can be used for conditioning.
|
295 |
+
:return: a dict with the following keys:
|
296 |
+
- 'mean': the model mean output.
|
297 |
+
- 'variance': the model variance output.
|
298 |
+
- 'log_variance': the log of 'variance'.
|
299 |
+
- 'pred_xstart': the prediction for x_0.
|
300 |
+
"""
|
301 |
+
if model_kwargs is None:
|
302 |
+
model_kwargs = {}
|
303 |
+
|
304 |
+
B, C = x.shape[:2]
|
305 |
+
assert t.shape == (B, )
|
306 |
+
with autocast(self.conf.fp16):
|
307 |
+
model_forward = model.forward(x=x,
|
308 |
+
t=self._scale_timesteps(t),
|
309 |
+
**model_kwargs)
|
310 |
+
model_output = model_forward.pred
|
311 |
+
|
312 |
+
if self.model_var_type in [
|
313 |
+
ModelVarType.fixed_large, ModelVarType.fixed_small
|
314 |
+
]:
|
315 |
+
model_variance, model_log_variance = {
|
316 |
+
# for fixedlarge, we set the initial (log-)variance like so
|
317 |
+
# to get a better decoder log likelihood.
|
318 |
+
ModelVarType.fixed_large: (
|
319 |
+
np.append(self.posterior_variance[1], self.betas[1:]),
|
320 |
+
np.log(
|
321 |
+
np.append(self.posterior_variance[1], self.betas[1:])),
|
322 |
+
),
|
323 |
+
ModelVarType.fixed_small: (
|
324 |
+
self.posterior_variance,
|
325 |
+
self.posterior_log_variance_clipped,
|
326 |
+
),
|
327 |
+
}[self.model_var_type]
|
328 |
+
model_variance = _extract_into_tensor(model_variance, t, x.shape)
|
329 |
+
model_log_variance = _extract_into_tensor(model_log_variance, t,
|
330 |
+
x.shape)
|
331 |
+
|
332 |
+
def process_xstart(x):
|
333 |
+
if denoised_fn is not None:
|
334 |
+
x = denoised_fn(x)
|
335 |
+
if clip_denoised:
|
336 |
+
return x.clamp(-1, 1)
|
337 |
+
return x
|
338 |
+
|
339 |
+
if self.model_mean_type in [
|
340 |
+
ModelMeanType.eps,
|
341 |
+
]:
|
342 |
+
if self.model_mean_type == ModelMeanType.eps:
|
343 |
+
pred_xstart = process_xstart(
|
344 |
+
self._predict_xstart_from_eps(x_t=x, t=t,
|
345 |
+
eps=model_output))
|
346 |
+
else:
|
347 |
+
raise NotImplementedError()
|
348 |
+
model_mean, _, _ = self.q_posterior_mean_variance(
|
349 |
+
x_start=pred_xstart, x_t=x, t=t)
|
350 |
+
else:
|
351 |
+
raise NotImplementedError(self.model_mean_type)
|
352 |
+
|
353 |
+
assert (model_mean.shape == model_log_variance.shape ==
|
354 |
+
pred_xstart.shape == x.shape)
|
355 |
+
return {
|
356 |
+
"mean": model_mean,
|
357 |
+
"variance": model_variance,
|
358 |
+
"log_variance": model_log_variance,
|
359 |
+
"pred_xstart": pred_xstart,
|
360 |
+
'model_forward': model_forward,
|
361 |
+
}
|
362 |
+
|
363 |
+
def _predict_xstart_from_eps(self, x_t, t, eps):
|
364 |
+
assert x_t.shape == eps.shape
|
365 |
+
return (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t,
|
366 |
+
x_t.shape) * x_t -
|
367 |
+
_extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t,
|
368 |
+
x_t.shape) * eps)
|
369 |
+
|
370 |
+
def _predict_xstart_from_xprev(self, x_t, t, xprev):
|
371 |
+
assert x_t.shape == xprev.shape
|
372 |
+
return ( # (xprev - coef2*x_t) / coef1
|
373 |
+
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape)
|
374 |
+
* xprev - _extract_into_tensor(
|
375 |
+
self.posterior_mean_coef2 / self.posterior_mean_coef1, t,
|
376 |
+
x_t.shape) * x_t)
|
377 |
+
|
378 |
+
def _predict_xstart_from_scaled_xstart(self, t, scaled_xstart):
|
379 |
+
return scaled_xstart * _extract_into_tensor(
|
380 |
+
self.sqrt_recip_alphas_cumprod, t, scaled_xstart.shape)
|
381 |
+
|
382 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
383 |
+
return (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t,
|
384 |
+
x_t.shape) * x_t -
|
385 |
+
pred_xstart) / _extract_into_tensor(
|
386 |
+
self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
387 |
+
|
388 |
+
def _predict_eps_from_scaled_xstart(self, x_t, t, scaled_xstart):
|
389 |
+
"""
|
390 |
+
Args:
|
391 |
+
scaled_xstart: is supposed to be sqrt(alphacum) * x_0
|
392 |
+
"""
|
393 |
+
# 1 / sqrt(1-alphabar) * (x_t - scaled xstart)
|
394 |
+
return (x_t - scaled_xstart) / _extract_into_tensor(
|
395 |
+
self.sqrt_one_minus_alphas_cumprod, t, x_t.shape)
|
396 |
+
|
397 |
+
def _scale_timesteps(self, t):
|
398 |
+
if self.rescale_timesteps:
|
399 |
+
# scale t to be maxed out at 1000 steps
|
400 |
+
return t.float() * (1000.0 / self.num_timesteps)
|
401 |
+
return t
|
402 |
+
|
403 |
+
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
404 |
+
"""
|
405 |
+
Compute the mean for the previous step, given a function cond_fn that
|
406 |
+
computes the gradient of a conditional log probability with respect to
|
407 |
+
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
|
408 |
+
condition on y.
|
409 |
+
|
410 |
+
This uses the conditioning strategy from Sohl-Dickstein et al. (2015).
|
411 |
+
"""
|
412 |
+
gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs)
|
413 |
+
new_mean = (p_mean_var["mean"].float() +
|
414 |
+
p_mean_var["variance"] * gradient.float())
|
415 |
+
return new_mean
|
416 |
+
|
417 |
+
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
418 |
+
"""
|
419 |
+
Compute what the p_mean_variance output would have been, should the
|
420 |
+
model's score function be conditioned by cond_fn.
|
421 |
+
|
422 |
+
See condition_mean() for details on cond_fn.
|
423 |
+
|
424 |
+
Unlike condition_mean(), this instead uses the conditioning strategy
|
425 |
+
from Song et al (2020).
|
426 |
+
"""
|
427 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
428 |
+
|
429 |
+
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
|
430 |
+
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(
|
431 |
+
x, self._scale_timesteps(t), **model_kwargs)
|
432 |
+
|
433 |
+
out = p_mean_var.copy()
|
434 |
+
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
|
435 |
+
out["mean"], _, _ = self.q_posterior_mean_variance(
|
436 |
+
x_start=out["pred_xstart"], x_t=x, t=t)
|
437 |
+
return out
|
438 |
+
|
439 |
+
def p_sample(
|
440 |
+
self,
|
441 |
+
model: Model,
|
442 |
+
x,
|
443 |
+
t,
|
444 |
+
clip_denoised=True,
|
445 |
+
denoised_fn=None,
|
446 |
+
cond_fn=None,
|
447 |
+
model_kwargs=None,
|
448 |
+
):
|
449 |
+
"""
|
450 |
+
Sample x_{t-1} from the model at the given timestep.
|
451 |
+
|
452 |
+
:param model: the model to sample from.
|
453 |
+
:param x: the current tensor at x_{t-1}.
|
454 |
+
:param t: the value of t, starting at 0 for the first diffusion step.
|
455 |
+
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
|
456 |
+
:param denoised_fn: if not None, a function which applies to the
|
457 |
+
x_start prediction before it is used to sample.
|
458 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
459 |
+
similarly to the model.
|
460 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
461 |
+
pass to the model. This can be used for conditioning.
|
462 |
+
:return: a dict containing the following keys:
|
463 |
+
- 'sample': a random sample from the model.
|
464 |
+
- 'pred_xstart': a prediction of x_0.
|
465 |
+
"""
|
466 |
+
out = self.p_mean_variance(
|
467 |
+
model,
|
468 |
+
x,
|
469 |
+
t,
|
470 |
+
clip_denoised=clip_denoised,
|
471 |
+
denoised_fn=denoised_fn,
|
472 |
+
model_kwargs=model_kwargs,
|
473 |
+
)
|
474 |
+
noise = th.randn_like(x)
|
475 |
+
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
476 |
+
) # no noise when t == 0
|
477 |
+
if cond_fn is not None:
|
478 |
+
out["mean"] = self.condition_mean(cond_fn,
|
479 |
+
out,
|
480 |
+
x,
|
481 |
+
t,
|
482 |
+
model_kwargs=model_kwargs)
|
483 |
+
sample = out["mean"] + nonzero_mask * th.exp(
|
484 |
+
0.5 * out["log_variance"]) * noise
|
485 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
486 |
+
|
487 |
+
def p_sample_loop(
|
488 |
+
self,
|
489 |
+
model: Model,
|
490 |
+
shape=None,
|
491 |
+
noise=None,
|
492 |
+
clip_denoised=True,
|
493 |
+
denoised_fn=None,
|
494 |
+
cond_fn=None,
|
495 |
+
model_kwargs=None,
|
496 |
+
device=None,
|
497 |
+
progress=False,
|
498 |
+
):
|
499 |
+
"""
|
500 |
+
Generate samples from the model.
|
501 |
+
|
502 |
+
:param model: the model module.
|
503 |
+
:param shape: the shape of the samples, (N, C, H, W).
|
504 |
+
:param noise: if specified, the noise from the encoder to sample.
|
505 |
+
Should be of the same shape as `shape`.
|
506 |
+
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
|
507 |
+
:param denoised_fn: if not None, a function which applies to the
|
508 |
+
x_start prediction before it is used to sample.
|
509 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
510 |
+
similarly to the model.
|
511 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
512 |
+
pass to the model. This can be used for conditioning.
|
513 |
+
:param device: if specified, the device to create the samples on.
|
514 |
+
If not specified, use a model parameter's device.
|
515 |
+
:param progress: if True, show a tqdm progress bar.
|
516 |
+
:return: a non-differentiable batch of samples.
|
517 |
+
"""
|
518 |
+
final = None
|
519 |
+
for sample in self.p_sample_loop_progressive(
|
520 |
+
model,
|
521 |
+
shape,
|
522 |
+
noise=noise,
|
523 |
+
clip_denoised=clip_denoised,
|
524 |
+
denoised_fn=denoised_fn,
|
525 |
+
cond_fn=cond_fn,
|
526 |
+
model_kwargs=model_kwargs,
|
527 |
+
device=device,
|
528 |
+
progress=progress,
|
529 |
+
):
|
530 |
+
final = sample
|
531 |
+
return final["sample"]
|
532 |
+
|
533 |
+
def p_sample_loop_progressive(
|
534 |
+
self,
|
535 |
+
model: Model,
|
536 |
+
shape=None,
|
537 |
+
noise=None,
|
538 |
+
clip_denoised=True,
|
539 |
+
denoised_fn=None,
|
540 |
+
cond_fn=None,
|
541 |
+
model_kwargs=None,
|
542 |
+
device=None,
|
543 |
+
progress=False,
|
544 |
+
):
|
545 |
+
"""
|
546 |
+
Generate samples from the model and yield intermediate samples from
|
547 |
+
each timestep of diffusion.
|
548 |
+
|
549 |
+
Arguments are the same as p_sample_loop().
|
550 |
+
Returns a generator over dicts, where each dict is the return value of
|
551 |
+
p_sample().
|
552 |
+
"""
|
553 |
+
if device is None:
|
554 |
+
device = next(model.parameters()).device
|
555 |
+
if noise is not None:
|
556 |
+
img = noise
|
557 |
+
else:
|
558 |
+
assert isinstance(shape, (tuple, list))
|
559 |
+
img = th.randn(*shape, device=device)
|
560 |
+
indices = list(range(self.num_timesteps))[::-1]
|
561 |
+
|
562 |
+
if progress:
|
563 |
+
# Lazy import so that we don't depend on tqdm.
|
564 |
+
from tqdm.auto import tqdm
|
565 |
+
|
566 |
+
indices = tqdm(indices)
|
567 |
+
|
568 |
+
for i in indices:
|
569 |
+
# t = th.tensor([i] * shape[0], device=device)
|
570 |
+
t = th.tensor([i] * len(img), device=device)
|
571 |
+
with th.no_grad():
|
572 |
+
out = self.p_sample(
|
573 |
+
model,
|
574 |
+
img,
|
575 |
+
t,
|
576 |
+
clip_denoised=clip_denoised,
|
577 |
+
denoised_fn=denoised_fn,
|
578 |
+
cond_fn=cond_fn,
|
579 |
+
model_kwargs=model_kwargs,
|
580 |
+
)
|
581 |
+
yield out
|
582 |
+
img = out["sample"]
|
583 |
+
|
584 |
+
def ddim_sample(
|
585 |
+
self,
|
586 |
+
model: Model,
|
587 |
+
x,
|
588 |
+
t,
|
589 |
+
clip_denoised=True,
|
590 |
+
denoised_fn=None,
|
591 |
+
cond_fn=None,
|
592 |
+
model_kwargs=None,
|
593 |
+
eta=0.0,
|
594 |
+
):
|
595 |
+
"""
|
596 |
+
Sample x_{t-1} from the model using DDIM.
|
597 |
+
|
598 |
+
Same usage as p_sample().
|
599 |
+
"""
|
600 |
+
out = self.p_mean_variance(
|
601 |
+
model,
|
602 |
+
x,
|
603 |
+
t,
|
604 |
+
clip_denoised=clip_denoised,
|
605 |
+
denoised_fn=denoised_fn,
|
606 |
+
model_kwargs=model_kwargs,
|
607 |
+
)
|
608 |
+
if cond_fn is not None:
|
609 |
+
out = self.condition_score(cond_fn,
|
610 |
+
out,
|
611 |
+
x,
|
612 |
+
t,
|
613 |
+
model_kwargs=model_kwargs)
|
614 |
+
|
615 |
+
# Usually our model outputs epsilon, but we re-derive it
|
616 |
+
# in case we used x_start or x_prev prediction.
|
617 |
+
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
|
618 |
+
|
619 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
620 |
+
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t,
|
621 |
+
x.shape)
|
622 |
+
sigma = (eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) *
|
623 |
+
th.sqrt(1 - alpha_bar / alpha_bar_prev))
|
624 |
+
# Equation 12.
|
625 |
+
noise = th.randn_like(x)
|
626 |
+
mean_pred = (out["pred_xstart"] * th.sqrt(alpha_bar_prev) +
|
627 |
+
th.sqrt(1 - alpha_bar_prev - sigma**2) * eps)
|
628 |
+
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
629 |
+
) # no noise when t == 0
|
630 |
+
sample = mean_pred + nonzero_mask * sigma * noise
|
631 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
632 |
+
|
633 |
+
def ddim_reverse_sample(
|
634 |
+
self,
|
635 |
+
model: Model,
|
636 |
+
x,
|
637 |
+
t,
|
638 |
+
clip_denoised=True,
|
639 |
+
denoised_fn=None,
|
640 |
+
model_kwargs=None,
|
641 |
+
eta=0.0,
|
642 |
+
):
|
643 |
+
"""
|
644 |
+
Sample x_{t+1} from the model using DDIM reverse ODE.
|
645 |
+
NOTE: never used ?
|
646 |
+
"""
|
647 |
+
assert eta == 0.0, "Reverse ODE only for deterministic path"
|
648 |
+
out = self.p_mean_variance(
|
649 |
+
model,
|
650 |
+
x,
|
651 |
+
t,
|
652 |
+
clip_denoised=clip_denoised,
|
653 |
+
denoised_fn=denoised_fn,
|
654 |
+
model_kwargs=model_kwargs,
|
655 |
+
)
|
656 |
+
# Usually our model outputs epsilon, but we re-derive it
|
657 |
+
# in case we used x_start or x_prev prediction.
|
658 |
+
eps = (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape)
|
659 |
+
* x - out["pred_xstart"]) / _extract_into_tensor(
|
660 |
+
self.sqrt_recipm1_alphas_cumprod, t, x.shape)
|
661 |
+
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t,
|
662 |
+
x.shape)
|
663 |
+
|
664 |
+
# Equation 12. reversed (DDIM paper) (th.sqrt == torch.sqrt)
|
665 |
+
mean_pred = (out["pred_xstart"] * th.sqrt(alpha_bar_next) +
|
666 |
+
th.sqrt(1 - alpha_bar_next) * eps)
|
667 |
+
|
668 |
+
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
|
669 |
+
|
670 |
+
def ddim_reverse_sample_loop(
|
671 |
+
self,
|
672 |
+
model: Model,
|
673 |
+
x,
|
674 |
+
clip_denoised=True,
|
675 |
+
denoised_fn=None,
|
676 |
+
model_kwargs=None,
|
677 |
+
eta=0.0,
|
678 |
+
device=None,
|
679 |
+
):
|
680 |
+
if device is None:
|
681 |
+
device = next(model.parameters()).device
|
682 |
+
sample_t = []
|
683 |
+
xstart_t = []
|
684 |
+
T = []
|
685 |
+
indices = list(range(self.num_timesteps))
|
686 |
+
sample = x
|
687 |
+
for i in indices:
|
688 |
+
t = th.tensor([i] * len(sample), device=device)
|
689 |
+
with th.no_grad():
|
690 |
+
out = self.ddim_reverse_sample(model,
|
691 |
+
sample,
|
692 |
+
t=t,
|
693 |
+
clip_denoised=clip_denoised,
|
694 |
+
denoised_fn=denoised_fn,
|
695 |
+
model_kwargs=model_kwargs,
|
696 |
+
eta=eta)
|
697 |
+
sample = out['sample']
|
698 |
+
# [1, ..., T]
|
699 |
+
sample_t.append(sample)
|
700 |
+
# [0, ...., T-1]
|
701 |
+
xstart_t.append(out['pred_xstart'])
|
702 |
+
# [0, ..., T-1] ready to use
|
703 |
+
T.append(t)
|
704 |
+
|
705 |
+
return {
|
706 |
+
# xT "
|
707 |
+
'sample': sample,
|
708 |
+
# (1, ..., T)
|
709 |
+
'sample_t': sample_t,
|
710 |
+
# xstart here is a bit different from sampling from T = T-1 to T = 0
|
711 |
+
# may not be exact
|
712 |
+
'xstart_t': xstart_t,
|
713 |
+
'T': T,
|
714 |
+
}
|
715 |
+
|
716 |
+
def ddim_sample_loop(
|
717 |
+
self,
|
718 |
+
model: Model,
|
719 |
+
shape=None,
|
720 |
+
noise=None,
|
721 |
+
clip_denoised=True,
|
722 |
+
denoised_fn=None,
|
723 |
+
cond_fn=None,
|
724 |
+
model_kwargs=None,
|
725 |
+
device=None,
|
726 |
+
progress=False,
|
727 |
+
eta=0.0,
|
728 |
+
):
|
729 |
+
"""
|
730 |
+
Generate samples from the model using DDIM.
|
731 |
+
|
732 |
+
Same usage as p_sample_loop().
|
733 |
+
"""
|
734 |
+
final = None
|
735 |
+
for sample in self.ddim_sample_loop_progressive(
|
736 |
+
model,
|
737 |
+
shape,
|
738 |
+
noise=noise,
|
739 |
+
clip_denoised=clip_denoised,
|
740 |
+
denoised_fn=denoised_fn,
|
741 |
+
cond_fn=cond_fn,
|
742 |
+
model_kwargs=model_kwargs,
|
743 |
+
device=device,
|
744 |
+
progress=progress,
|
745 |
+
eta=eta,
|
746 |
+
):
|
747 |
+
final = sample
|
748 |
+
return final["sample"]
|
749 |
+
|
750 |
+
def ddim_sample_loop_progressive(
|
751 |
+
self,
|
752 |
+
model: Model,
|
753 |
+
shape=None,
|
754 |
+
noise=None,
|
755 |
+
clip_denoised=True,
|
756 |
+
denoised_fn=None,
|
757 |
+
cond_fn=None,
|
758 |
+
model_kwargs=None,
|
759 |
+
device=None,
|
760 |
+
progress=False,
|
761 |
+
eta=0.0,
|
762 |
+
):
|
763 |
+
"""
|
764 |
+
Use DDIM to sample from the model and yield intermediate samples from
|
765 |
+
each timestep of DDIM.
|
766 |
+
|
767 |
+
Same usage as p_sample_loop_progressive().
|
768 |
+
"""
|
769 |
+
if device is None:
|
770 |
+
device = next(model.parameters()).device
|
771 |
+
if noise is not None:
|
772 |
+
img = noise
|
773 |
+
else:
|
774 |
+
assert isinstance(shape, (tuple, list))
|
775 |
+
img = th.randn(*shape, device=device)
|
776 |
+
indices = list(range(self.num_timesteps))[::-1]
|
777 |
+
|
778 |
+
if progress:
|
779 |
+
# Lazy import so that we don't depend on tqdm.
|
780 |
+
from tqdm.auto import tqdm
|
781 |
+
|
782 |
+
indices = tqdm(indices)
|
783 |
+
|
784 |
+
for i in indices:
|
785 |
+
|
786 |
+
if isinstance(model_kwargs, list):
|
787 |
+
# index dependent model kwargs
|
788 |
+
# (T-1, ..., 0)
|
789 |
+
_kwargs = model_kwargs[i]
|
790 |
+
else:
|
791 |
+
_kwargs = model_kwargs
|
792 |
+
|
793 |
+
t = th.tensor([i] * len(img), device=device)
|
794 |
+
with th.no_grad():
|
795 |
+
out = self.ddim_sample(
|
796 |
+
model,
|
797 |
+
img,
|
798 |
+
t,
|
799 |
+
clip_denoised=clip_denoised,
|
800 |
+
denoised_fn=denoised_fn,
|
801 |
+
cond_fn=cond_fn,
|
802 |
+
model_kwargs=_kwargs,
|
803 |
+
eta=eta,
|
804 |
+
)
|
805 |
+
out['t'] = t
|
806 |
+
yield out
|
807 |
+
img = out["sample"]
|
808 |
+
|
809 |
+
def _vb_terms_bpd(self,
|
810 |
+
model: Model,
|
811 |
+
x_start,
|
812 |
+
x_t,
|
813 |
+
t,
|
814 |
+
clip_denoised=True,
|
815 |
+
model_kwargs=None):
|
816 |
+
"""
|
817 |
+
Get a term for the variational lower-bound.
|
818 |
+
|
819 |
+
The resulting units are bits (rather than nats, as one might expect).
|
820 |
+
This allows for comparison to other papers.
|
821 |
+
|
822 |
+
:return: a dict with the following keys:
|
823 |
+
- 'output': a shape [N] tensor of NLLs or KLs.
|
824 |
+
- 'pred_xstart': the x_0 predictions.
|
825 |
+
"""
|
826 |
+
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
|
827 |
+
x_start=x_start, x_t=x_t, t=t)
|
828 |
+
out = self.p_mean_variance(model,
|
829 |
+
x_t,
|
830 |
+
t,
|
831 |
+
clip_denoised=clip_denoised,
|
832 |
+
model_kwargs=model_kwargs)
|
833 |
+
kl = normal_kl(true_mean, true_log_variance_clipped, out["mean"],
|
834 |
+
out["log_variance"])
|
835 |
+
kl = mean_flat(kl) / np.log(2.0)
|
836 |
+
|
837 |
+
decoder_nll = -discretized_gaussian_log_likelihood(
|
838 |
+
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"])
|
839 |
+
assert decoder_nll.shape == x_start.shape
|
840 |
+
decoder_nll = mean_flat(decoder_nll) / np.log(2.0)
|
841 |
+
|
842 |
+
# At the first timestep return the decoder NLL,
|
843 |
+
# otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
|
844 |
+
output = th.where((t == 0), decoder_nll, kl)
|
845 |
+
return {
|
846 |
+
"output": output,
|
847 |
+
"pred_xstart": out["pred_xstart"],
|
848 |
+
'model_forward': out['model_forward'],
|
849 |
+
}
|
850 |
+
|
851 |
+
def _prior_bpd(self, x_start):
|
852 |
+
"""
|
853 |
+
Get the prior KL term for the variational lower-bound, measured in
|
854 |
+
bits-per-dim.
|
855 |
+
|
856 |
+
This term can't be optimized, as it only depends on the encoder.
|
857 |
+
|
858 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
859 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
860 |
+
"""
|
861 |
+
batch_size = x_start.shape[0]
|
862 |
+
t = th.tensor([self.num_timesteps - 1] * batch_size,
|
863 |
+
device=x_start.device)
|
864 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
865 |
+
kl_prior = normal_kl(mean1=qt_mean,
|
866 |
+
logvar1=qt_log_variance,
|
867 |
+
mean2=0.0,
|
868 |
+
logvar2=0.0)
|
869 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
870 |
+
|
871 |
+
def calc_bpd_loop(self,
|
872 |
+
model: Model,
|
873 |
+
x_start,
|
874 |
+
clip_denoised=True,
|
875 |
+
model_kwargs=None):
|
876 |
+
"""
|
877 |
+
Compute the entire variational lower-bound, measured in bits-per-dim,
|
878 |
+
as well as other related quantities.
|
879 |
+
|
880 |
+
:param model: the model to evaluate loss on.
|
881 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
882 |
+
:param clip_denoised: if True, clip denoised samples.
|
883 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
884 |
+
pass to the model. This can be used for conditioning.
|
885 |
+
|
886 |
+
:return: a dict containing the following keys:
|
887 |
+
- total_bpd: the total variational lower-bound, per batch element.
|
888 |
+
- prior_bpd: the prior term in the lower-bound.
|
889 |
+
- vb: an [N x T] tensor of terms in the lower-bound.
|
890 |
+
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep.
|
891 |
+
- mse: an [N x T] tensor of epsilon MSEs for each timestep.
|
892 |
+
"""
|
893 |
+
device = x_start.device
|
894 |
+
batch_size = x_start.shape[0]
|
895 |
+
|
896 |
+
vb = []
|
897 |
+
xstart_mse = []
|
898 |
+
mse = []
|
899 |
+
for t in list(range(self.num_timesteps))[::-1]:
|
900 |
+
t_batch = th.tensor([t] * batch_size, device=device)
|
901 |
+
noise = th.randn_like(x_start)
|
902 |
+
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise)
|
903 |
+
# Calculate VLB term at the current timestep
|
904 |
+
with th.no_grad():
|
905 |
+
out = self._vb_terms_bpd(
|
906 |
+
model,
|
907 |
+
x_start=x_start,
|
908 |
+
x_t=x_t,
|
909 |
+
t=t_batch,
|
910 |
+
clip_denoised=clip_denoised,
|
911 |
+
model_kwargs=model_kwargs,
|
912 |
+
)
|
913 |
+
vb.append(out["output"])
|
914 |
+
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start)**2))
|
915 |
+
eps = self._predict_eps_from_xstart(x_t, t_batch,
|
916 |
+
out["pred_xstart"])
|
917 |
+
mse.append(mean_flat((eps - noise)**2))
|
918 |
+
|
919 |
+
vb = th.stack(vb, dim=1)
|
920 |
+
xstart_mse = th.stack(xstart_mse, dim=1)
|
921 |
+
mse = th.stack(mse, dim=1)
|
922 |
+
|
923 |
+
prior_bpd = self._prior_bpd(x_start)
|
924 |
+
total_bpd = vb.sum(dim=1) + prior_bpd
|
925 |
+
return {
|
926 |
+
"total_bpd": total_bpd,
|
927 |
+
"prior_bpd": prior_bpd,
|
928 |
+
"vb": vb,
|
929 |
+
"xstart_mse": xstart_mse,
|
930 |
+
"mse": mse,
|
931 |
+
}
|
932 |
+
|
933 |
+
|
934 |
+
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
935 |
+
"""
|
936 |
+
Extract values from a 1-D numpy array for a batch of indices.
|
937 |
+
|
938 |
+
:param arr: the 1-D numpy array.
|
939 |
+
:param timesteps: a tensor of indices into the array to extract.
|
940 |
+
:param broadcast_shape: a larger shape of K dimensions with the batch
|
941 |
+
dimension equal to the length of timesteps.
|
942 |
+
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
943 |
+
"""
|
944 |
+
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
|
945 |
+
while len(res.shape) < len(broadcast_shape):
|
946 |
+
res = res[..., None]
|
947 |
+
return res.expand(broadcast_shape)
|
948 |
+
|
949 |
+
|
950 |
+
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
|
951 |
+
"""
|
952 |
+
Get a pre-defined beta schedule for the given name.
|
953 |
+
|
954 |
+
The beta schedule library consists of beta schedules which remain similar
|
955 |
+
in the limit of num_diffusion_timesteps.
|
956 |
+
Beta schedules may be added, but should not be removed or changed once
|
957 |
+
they are committed to maintain backwards compatibility.
|
958 |
+
"""
|
959 |
+
if schedule_name == "linear":
|
960 |
+
# Linear schedule from Ho et al, extended to work for any number of
|
961 |
+
# diffusion steps.
|
962 |
+
scale = 1000 / num_diffusion_timesteps
|
963 |
+
beta_start = scale * 0.0001
|
964 |
+
beta_end = scale * 0.02
|
965 |
+
return np.linspace(beta_start,
|
966 |
+
beta_end,
|
967 |
+
num_diffusion_timesteps,
|
968 |
+
dtype=np.float64)
|
969 |
+
elif schedule_name == "cosine":
|
970 |
+
return betas_for_alpha_bar(
|
971 |
+
num_diffusion_timesteps,
|
972 |
+
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2)**2,
|
973 |
+
)
|
974 |
+
elif schedule_name == "const0.01":
|
975 |
+
scale = 1000 / num_diffusion_timesteps
|
976 |
+
return np.array([scale * 0.01] * num_diffusion_timesteps,
|
977 |
+
dtype=np.float64)
|
978 |
+
elif schedule_name == "const0.015":
|
979 |
+
scale = 1000 / num_diffusion_timesteps
|
980 |
+
return np.array([scale * 0.015] * num_diffusion_timesteps,
|
981 |
+
dtype=np.float64)
|
982 |
+
elif schedule_name == "const0.008":
|
983 |
+
scale = 1000 / num_diffusion_timesteps
|
984 |
+
return np.array([scale * 0.008] * num_diffusion_timesteps,
|
985 |
+
dtype=np.float64)
|
986 |
+
elif schedule_name == "const0.0065":
|
987 |
+
scale = 1000 / num_diffusion_timesteps
|
988 |
+
return np.array([scale * 0.0065] * num_diffusion_timesteps,
|
989 |
+
dtype=np.float64)
|
990 |
+
elif schedule_name == "const0.0055":
|
991 |
+
scale = 1000 / num_diffusion_timesteps
|
992 |
+
return np.array([scale * 0.0055] * num_diffusion_timesteps,
|
993 |
+
dtype=np.float64)
|
994 |
+
elif schedule_name == "const0.0045":
|
995 |
+
scale = 1000 / num_diffusion_timesteps
|
996 |
+
return np.array([scale * 0.0045] * num_diffusion_timesteps,
|
997 |
+
dtype=np.float64)
|
998 |
+
elif schedule_name == "const0.0035":
|
999 |
+
scale = 1000 / num_diffusion_timesteps
|
1000 |
+
return np.array([scale * 0.0035] * num_diffusion_timesteps,
|
1001 |
+
dtype=np.float64)
|
1002 |
+
elif schedule_name == "const0.0025":
|
1003 |
+
scale = 1000 / num_diffusion_timesteps
|
1004 |
+
return np.array([scale * 0.0025] * num_diffusion_timesteps,
|
1005 |
+
dtype=np.float64)
|
1006 |
+
elif schedule_name == "const0.0015":
|
1007 |
+
scale = 1000 / num_diffusion_timesteps
|
1008 |
+
return np.array([scale * 0.0015] * num_diffusion_timesteps,
|
1009 |
+
dtype=np.float64)
|
1010 |
+
else:
|
1011 |
+
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
|
1012 |
+
|
1013 |
+
|
1014 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
1015 |
+
"""
|
1016 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
1017 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
1018 |
+
|
1019 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
1020 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
1021 |
+
produces the cumulative product of (1-beta) up to that
|
1022 |
+
part of the diffusion process.
|
1023 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
1024 |
+
prevent singularities.
|
1025 |
+
"""
|
1026 |
+
betas = []
|
1027 |
+
for i in range(num_diffusion_timesteps):
|
1028 |
+
t1 = i / num_diffusion_timesteps
|
1029 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
1030 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
1031 |
+
return np.array(betas)
|
1032 |
+
|
1033 |
+
|
1034 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
1035 |
+
"""
|
1036 |
+
Compute the KL divergence between two gaussians.
|
1037 |
+
|
1038 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
1039 |
+
scalars, among other use cases.
|
1040 |
+
"""
|
1041 |
+
tensor = None
|
1042 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
1043 |
+
if isinstance(obj, th.Tensor):
|
1044 |
+
tensor = obj
|
1045 |
+
break
|
1046 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
1047 |
+
|
1048 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
1049 |
+
# Tensors, but it does not work for th.exp().
|
1050 |
+
logvar1, logvar2 = [
|
1051 |
+
x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
|
1052 |
+
for x in (logvar1, logvar2)
|
1053 |
+
]
|
1054 |
+
|
1055 |
+
return 0.5 * (-1.0 + logvar2 - logvar1 + th.exp(logvar1 - logvar2) +
|
1056 |
+
((mean1 - mean2)**2) * th.exp(-logvar2))
|
1057 |
+
|
1058 |
+
|
1059 |
+
def approx_standard_normal_cdf(x):
|
1060 |
+
"""
|
1061 |
+
A fast approximation of the cumulative distribution function of the
|
1062 |
+
standard normal.
|
1063 |
+
"""
|
1064 |
+
return 0.5 * (
|
1065 |
+
1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
|
1066 |
+
|
1067 |
+
|
1068 |
+
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
|
1069 |
+
"""
|
1070 |
+
Compute the log-likelihood of a Gaussian distribution discretizing to a
|
1071 |
+
given image.
|
1072 |
+
|
1073 |
+
:param x: the target images. It is assumed that this was uint8 values,
|
1074 |
+
rescaled to the range [-1, 1].
|
1075 |
+
:param means: the Gaussian mean Tensor.
|
1076 |
+
:param log_scales: the Gaussian log stddev Tensor.
|
1077 |
+
:return: a tensor like x of log probabilities (in nats).
|
1078 |
+
"""
|
1079 |
+
assert x.shape == means.shape == log_scales.shape
|
1080 |
+
centered_x = x - means
|
1081 |
+
inv_stdv = th.exp(-log_scales)
|
1082 |
+
plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
|
1083 |
+
cdf_plus = approx_standard_normal_cdf(plus_in)
|
1084 |
+
min_in = inv_stdv * (centered_x - 1.0 / 255.0)
|
1085 |
+
cdf_min = approx_standard_normal_cdf(min_in)
|
1086 |
+
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
|
1087 |
+
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
|
1088 |
+
cdf_delta = cdf_plus - cdf_min
|
1089 |
+
log_probs = th.where(
|
1090 |
+
x < -0.999,
|
1091 |
+
log_cdf_plus,
|
1092 |
+
th.where(x > 0.999, log_one_minus_cdf_min,
|
1093 |
+
th.log(cdf_delta.clamp(min=1e-12))),
|
1094 |
+
)
|
1095 |
+
assert log_probs.shape == x.shape
|
1096 |
+
return log_probs
|
1097 |
+
|
1098 |
+
|
1099 |
+
class DummyModel(th.nn.Module):
|
1100 |
+
def __init__(self, pred):
|
1101 |
+
super().__init__()
|
1102 |
+
self.pred = pred
|
1103 |
+
|
1104 |
+
def forward(self, *args, **kwargs):
|
1105 |
+
return DummyReturn(pred=self.pred)
|
1106 |
+
|
1107 |
+
|
1108 |
+
class DummyReturn(NamedTuple):
|
1109 |
+
pred: th.Tensor
|
DiffAE_diffusion_diffusion.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .DiffAE_diffusion_base import *
|
2 |
+
from dataclasses import dataclass
|
3 |
+
|
4 |
+
|
5 |
+
def space_timesteps(num_timesteps, section_counts):
|
6 |
+
"""
|
7 |
+
Create a list of timesteps to use from an original diffusion process,
|
8 |
+
given the number of timesteps we want to take from equally-sized portions
|
9 |
+
of the original process.
|
10 |
+
|
11 |
+
For example, if there's 300 timesteps and the section counts are [10,15,20]
|
12 |
+
then the first 100 timesteps are strided to be 10 timesteps, the second 100
|
13 |
+
are strided to be 15 timesteps, and the final 100 are strided to be 20.
|
14 |
+
|
15 |
+
If the stride is a string starting with "ddim", then the fixed striding
|
16 |
+
from the DDIM paper is used, and only one section is allowed.
|
17 |
+
|
18 |
+
:param num_timesteps: the number of diffusion steps in the original
|
19 |
+
process to divide up.
|
20 |
+
:param section_counts: either a list of numbers, or a string containing
|
21 |
+
comma-separated numbers, indicating the step count
|
22 |
+
per section. As a special case, use "ddimN" where N
|
23 |
+
is a number of steps to use the striding from the
|
24 |
+
DDIM paper.
|
25 |
+
:return: a set of diffusion steps from the original process to use.
|
26 |
+
"""
|
27 |
+
if isinstance(section_counts, str):
|
28 |
+
if section_counts.startswith("ddim"):
|
29 |
+
desired_count = int(section_counts[len("ddim"):])
|
30 |
+
for i in range(1, num_timesteps):
|
31 |
+
if len(range(0, num_timesteps, i)) == desired_count:
|
32 |
+
return set(range(0, num_timesteps, i))
|
33 |
+
raise ValueError(
|
34 |
+
f"cannot create exactly {num_timesteps} steps with an integer stride"
|
35 |
+
)
|
36 |
+
section_counts = [int(x) for x in section_counts.split(",")]
|
37 |
+
size_per = num_timesteps // len(section_counts)
|
38 |
+
extra = num_timesteps % len(section_counts)
|
39 |
+
start_idx = 0
|
40 |
+
all_steps = []
|
41 |
+
for i, section_count in enumerate(section_counts):
|
42 |
+
size = size_per + (1 if i < extra else 0)
|
43 |
+
if size < section_count:
|
44 |
+
raise ValueError(
|
45 |
+
f"cannot divide section of {size} steps into {section_count}")
|
46 |
+
if section_count <= 1:
|
47 |
+
frac_stride = 1
|
48 |
+
else:
|
49 |
+
frac_stride = (size - 1) / (section_count - 1)
|
50 |
+
cur_idx = 0.0
|
51 |
+
taken_steps = []
|
52 |
+
for _ in range(section_count):
|
53 |
+
taken_steps.append(start_idx + round(cur_idx))
|
54 |
+
cur_idx += frac_stride
|
55 |
+
all_steps += taken_steps
|
56 |
+
start_idx += size
|
57 |
+
return set(all_steps)
|
58 |
+
|
59 |
+
|
60 |
+
@dataclass
|
61 |
+
class SpacedDiffusionBeatGansConfig(GaussianDiffusionBeatGansConfig):
|
62 |
+
use_timesteps: Tuple[int] = None
|
63 |
+
|
64 |
+
def make_sampler(self):
|
65 |
+
return SpacedDiffusionBeatGans(self)
|
66 |
+
|
67 |
+
|
68 |
+
class SpacedDiffusionBeatGans(GaussianDiffusionBeatGans):
|
69 |
+
"""
|
70 |
+
A diffusion process which can skip steps in a base diffusion process.
|
71 |
+
|
72 |
+
:param use_timesteps: a collection (sequence or set) of timesteps from the
|
73 |
+
original diffusion process to retain.
|
74 |
+
:param kwargs: the kwargs to create the base diffusion process.
|
75 |
+
"""
|
76 |
+
def __init__(self, conf: SpacedDiffusionBeatGansConfig):
|
77 |
+
self.conf = conf
|
78 |
+
self.use_timesteps = set(conf.use_timesteps)
|
79 |
+
# how the new t's mapped to the old t's
|
80 |
+
self.timestep_map = []
|
81 |
+
self.original_num_steps = len(conf.betas)
|
82 |
+
|
83 |
+
base_diffusion = GaussianDiffusionBeatGans(conf) # pylint: disable=missing-kwoa
|
84 |
+
last_alpha_cumprod = 1.0
|
85 |
+
new_betas = []
|
86 |
+
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
|
87 |
+
if i in self.use_timesteps:
|
88 |
+
# getting the new betas of the new timesteps
|
89 |
+
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
|
90 |
+
last_alpha_cumprod = alpha_cumprod
|
91 |
+
self.timestep_map.append(i)
|
92 |
+
conf.betas = np.array(new_betas)
|
93 |
+
super().__init__(conf)
|
94 |
+
|
95 |
+
def p_mean_variance(self, model: Model, *args, **kwargs): # pylint: disable=signature-differs
|
96 |
+
return super().p_mean_variance(self._wrap_model(model), *args,
|
97 |
+
**kwargs)
|
98 |
+
|
99 |
+
def training_losses(self, model: Model, *args, **kwargs): # pylint: disable=signature-differs
|
100 |
+
return super().training_losses(self._wrap_model(model), *args,
|
101 |
+
**kwargs)
|
102 |
+
|
103 |
+
def condition_mean(self, cond_fn, *args, **kwargs):
|
104 |
+
return super().condition_mean(self._wrap_model(cond_fn), *args,
|
105 |
+
**kwargs)
|
106 |
+
|
107 |
+
def condition_score(self, cond_fn, *args, **kwargs):
|
108 |
+
return super().condition_score(self._wrap_model(cond_fn), *args,
|
109 |
+
**kwargs)
|
110 |
+
|
111 |
+
def _wrap_model(self, model: Model):
|
112 |
+
if isinstance(model, _WrappedModel):
|
113 |
+
return model
|
114 |
+
return _WrappedModel(model, self.timestep_map, self.rescale_timesteps,
|
115 |
+
self.original_num_steps)
|
116 |
+
|
117 |
+
def _scale_timesteps(self, t):
|
118 |
+
# Scaling is done by the wrapped model.
|
119 |
+
return t
|
120 |
+
|
121 |
+
|
122 |
+
class _WrappedModel:
|
123 |
+
"""
|
124 |
+
converting the supplied t's to the old t's scales.
|
125 |
+
"""
|
126 |
+
def __init__(self, model, timestep_map, rescale_timesteps,
|
127 |
+
original_num_steps):
|
128 |
+
self.model = model
|
129 |
+
self.timestep_map = timestep_map
|
130 |
+
self.rescale_timesteps = rescale_timesteps
|
131 |
+
self.original_num_steps = original_num_steps
|
132 |
+
|
133 |
+
def forward(self, x, t, t_cond=None, **kwargs):
|
134 |
+
"""
|
135 |
+
Args:
|
136 |
+
t: t's with differrent ranges (can be << T due to smaller eval T) need to be converted to the original t's
|
137 |
+
t_cond: the same as t but can be of different values
|
138 |
+
"""
|
139 |
+
map_tensor = th.tensor(self.timestep_map,
|
140 |
+
device=t.device,
|
141 |
+
dtype=t.dtype)
|
142 |
+
|
143 |
+
def do(t):
|
144 |
+
new_ts = map_tensor[t]
|
145 |
+
if self.rescale_timesteps:
|
146 |
+
new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
|
147 |
+
return new_ts
|
148 |
+
|
149 |
+
if t_cond is not None:
|
150 |
+
# support t_cond
|
151 |
+
t_cond = do(t_cond)
|
152 |
+
|
153 |
+
return self.model(x=x, t=do(t), t_cond=t_cond, **kwargs)
|
154 |
+
|
155 |
+
def __getattr__(self, name):
|
156 |
+
# allow for calling the model's methods
|
157 |
+
if hasattr(self.model, name):
|
158 |
+
func = getattr(self.model, name)
|
159 |
+
return func
|
160 |
+
raise AttributeError(name)
|
DiffAE_diffusion_resample.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch as th
|
5 |
+
import torch.distributed as dist
|
6 |
+
|
7 |
+
|
8 |
+
def create_named_schedule_sampler(name, diffusion):
|
9 |
+
"""
|
10 |
+
Create a ScheduleSampler from a library of pre-defined samplers.
|
11 |
+
|
12 |
+
:param name: the name of the sampler.
|
13 |
+
:param diffusion: the diffusion object to sample for.
|
14 |
+
"""
|
15 |
+
if name == "uniform":
|
16 |
+
return UniformSampler(diffusion)
|
17 |
+
else:
|
18 |
+
raise NotImplementedError(f"unknown schedule sampler: {name}")
|
19 |
+
|
20 |
+
|
21 |
+
class ScheduleSampler(ABC):
|
22 |
+
"""
|
23 |
+
A distribution over timesteps in the diffusion process, intended to reduce
|
24 |
+
variance of the objective.
|
25 |
+
|
26 |
+
By default, samplers perform unbiased importance sampling, in which the
|
27 |
+
objective's mean is unchanged.
|
28 |
+
However, subclasses may override sample() to change how the resampled
|
29 |
+
terms are reweighted, allowing for actual changes in the objective.
|
30 |
+
"""
|
31 |
+
@abstractmethod
|
32 |
+
def weights(self):
|
33 |
+
"""
|
34 |
+
Get a numpy array of weights, one per diffusion step.
|
35 |
+
|
36 |
+
The weights needn't be normalized, but must be positive.
|
37 |
+
"""
|
38 |
+
|
39 |
+
def sample(self, batch_size, device):
|
40 |
+
"""
|
41 |
+
Importance-sample timesteps for a batch.
|
42 |
+
|
43 |
+
:param batch_size: the number of timesteps.
|
44 |
+
:param device: the torch device to save to.
|
45 |
+
:return: a tuple (timesteps, weights):
|
46 |
+
- timesteps: a tensor of timestep indices.
|
47 |
+
- weights: a tensor of weights to scale the resulting losses.
|
48 |
+
"""
|
49 |
+
w = self.weights()
|
50 |
+
p = w / np.sum(w)
|
51 |
+
indices_np = np.random.choice(len(p), size=(batch_size, ), p=p)
|
52 |
+
indices = th.from_numpy(indices_np).long().to(device)
|
53 |
+
weights_np = 1 / (len(p) * p[indices_np])
|
54 |
+
weights = th.from_numpy(weights_np).float().to(device)
|
55 |
+
return indices, weights
|
56 |
+
|
57 |
+
|
58 |
+
class UniformSampler(ScheduleSampler):
|
59 |
+
def __init__(self, num_timesteps):
|
60 |
+
self._weights = np.ones([num_timesteps])
|
61 |
+
|
62 |
+
def weights(self):
|
63 |
+
return self._weights
|
DiffAE_model.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
from .DiffAE_model_unet import BeatGANsUNetModel, BeatGANsUNetConfig
|
3 |
+
from .DiffAE_model_unet_autoenc import BeatGANsAutoencConfig, BeatGANsAutoencModel
|
4 |
+
from .DiffAE_model_latentnet import *
|
5 |
+
|
6 |
+
Model = Union[BeatGANsUNetModel, BeatGANsAutoencModel]
|
7 |
+
ModelConfig = Union[BeatGANsUNetConfig, BeatGANsAutoencConfig]
|
DiffAE_model_blocks.py
ADDED
@@ -0,0 +1,569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
from abc import abstractmethod
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from numbers import Number
|
6 |
+
|
7 |
+
import torch as th
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from .DiffAE_support_choices import *
|
10 |
+
from .DiffAE_support_config_base import BaseConfig
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
from .DiffAE_model_nn import (avg_pool_nd, conv_nd, linear, normalization,
|
14 |
+
timestep_embedding, torch_checkpoint, zero_module)
|
15 |
+
|
16 |
+
class ScaleAt(Enum):
|
17 |
+
after_norm = 'afternorm'
|
18 |
+
|
19 |
+
|
20 |
+
class TimestepBlock(nn.Module):
|
21 |
+
"""
|
22 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
23 |
+
"""
|
24 |
+
@abstractmethod
|
25 |
+
def forward(self, x, emb=None, cond=None, lateral=None):
|
26 |
+
"""
|
27 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
28 |
+
"""
|
29 |
+
|
30 |
+
|
31 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
32 |
+
"""
|
33 |
+
A sequential module that passes timestep embeddings to the children that
|
34 |
+
support it as an extra input.
|
35 |
+
"""
|
36 |
+
def forward(self, x, emb=None, cond=None, lateral=None):
|
37 |
+
for layer in self:
|
38 |
+
if isinstance(layer, TimestepBlock):
|
39 |
+
x = layer(x, emb=emb, cond=cond, lateral=lateral)
|
40 |
+
else:
|
41 |
+
x = layer(x)
|
42 |
+
return x
|
43 |
+
|
44 |
+
|
45 |
+
@dataclass
|
46 |
+
class ResBlockConfig(BaseConfig):
|
47 |
+
channels: int
|
48 |
+
emb_channels: int
|
49 |
+
dropout: float
|
50 |
+
out_channels: int = None
|
51 |
+
# condition the resblock with time (and encoder's output)
|
52 |
+
use_condition: bool = True
|
53 |
+
# whether to use 3x3 conv for skip path when the channels aren't matched
|
54 |
+
use_conv: bool = False
|
55 |
+
group_norm_limit: int = 32
|
56 |
+
# dimension of conv (always 2 = 2d)
|
57 |
+
dims: int = 2
|
58 |
+
# gradient checkpoint
|
59 |
+
use_checkpoint: bool = False
|
60 |
+
up: bool = False
|
61 |
+
down: bool = False
|
62 |
+
# whether to condition with both time & encoder's output
|
63 |
+
two_cond: bool = False
|
64 |
+
# number of encoders' output channels
|
65 |
+
cond_emb_channels: int = None
|
66 |
+
# suggest: False
|
67 |
+
has_lateral: bool = False
|
68 |
+
lateral_channels: int = None
|
69 |
+
# whether to init the convolution with zero weights
|
70 |
+
# this is default from BeatGANs and seems to help learning
|
71 |
+
use_zero_module: bool = True
|
72 |
+
|
73 |
+
def __post_init__(self):
|
74 |
+
self.out_channels = self.out_channels or self.channels
|
75 |
+
self.cond_emb_channels = self.cond_emb_channels or self.emb_channels
|
76 |
+
|
77 |
+
def make_model(self):
|
78 |
+
return ResBlock(self)
|
79 |
+
|
80 |
+
|
81 |
+
class ResBlock(TimestepBlock):
|
82 |
+
"""
|
83 |
+
A residual block that can optionally change the number of channels.
|
84 |
+
|
85 |
+
total layers:
|
86 |
+
in_layers
|
87 |
+
- norm
|
88 |
+
- act
|
89 |
+
- conv
|
90 |
+
out_layers
|
91 |
+
- norm
|
92 |
+
- (modulation)
|
93 |
+
- act
|
94 |
+
- conv
|
95 |
+
"""
|
96 |
+
def __init__(self, conf: ResBlockConfig):
|
97 |
+
super().__init__()
|
98 |
+
self.conf = conf
|
99 |
+
|
100 |
+
#############################
|
101 |
+
# IN LAYERS
|
102 |
+
#############################
|
103 |
+
assert conf.lateral_channels is None
|
104 |
+
layers = [
|
105 |
+
normalization(conf.channels, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32),
|
106 |
+
nn.SiLU(),
|
107 |
+
conv_nd(conf.dims, conf.channels, conf.out_channels, 3, padding=1)
|
108 |
+
]
|
109 |
+
self.in_layers = nn.Sequential(*layers)
|
110 |
+
|
111 |
+
self.updown = conf.up or conf.down
|
112 |
+
|
113 |
+
if conf.up:
|
114 |
+
self.h_upd = Upsample(conf.channels, False, conf.dims)
|
115 |
+
self.x_upd = Upsample(conf.channels, False, conf.dims)
|
116 |
+
elif conf.down:
|
117 |
+
self.h_upd = Downsample(conf.channels, False, conf.dims)
|
118 |
+
self.x_upd = Downsample(conf.channels, False, conf.dims)
|
119 |
+
else:
|
120 |
+
self.h_upd = self.x_upd = nn.Identity()
|
121 |
+
|
122 |
+
#############################
|
123 |
+
# OUT LAYERS CONDITIONS
|
124 |
+
#############################
|
125 |
+
if conf.use_condition:
|
126 |
+
# condition layers for the out_layers
|
127 |
+
self.emb_layers = nn.Sequential(
|
128 |
+
nn.SiLU(),
|
129 |
+
linear(conf.emb_channels, 2 * conf.out_channels),
|
130 |
+
)
|
131 |
+
|
132 |
+
if conf.two_cond:
|
133 |
+
self.cond_emb_layers = nn.Sequential(
|
134 |
+
nn.SiLU(),
|
135 |
+
linear(conf.cond_emb_channels, conf.out_channels),
|
136 |
+
)
|
137 |
+
#############################
|
138 |
+
# OUT LAYERS (ignored when there is no condition)
|
139 |
+
#############################
|
140 |
+
# original version
|
141 |
+
conv = conv_nd(conf.dims,
|
142 |
+
conf.out_channels,
|
143 |
+
conf.out_channels,
|
144 |
+
3,
|
145 |
+
padding=1)
|
146 |
+
if conf.use_zero_module:
|
147 |
+
# zere out the weights
|
148 |
+
# it seems to help training
|
149 |
+
conv = zero_module(conv)
|
150 |
+
|
151 |
+
# construct the layers
|
152 |
+
# - norm
|
153 |
+
# - (modulation)
|
154 |
+
# - act
|
155 |
+
# - dropout
|
156 |
+
# - conv
|
157 |
+
layers = []
|
158 |
+
layers += [
|
159 |
+
normalization(conf.out_channels, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32),
|
160 |
+
nn.SiLU(),
|
161 |
+
nn.Dropout(p=conf.dropout),
|
162 |
+
conv,
|
163 |
+
]
|
164 |
+
self.out_layers = nn.Sequential(*layers)
|
165 |
+
|
166 |
+
#############################
|
167 |
+
# SKIP LAYERS
|
168 |
+
#############################
|
169 |
+
if conf.out_channels == conf.channels:
|
170 |
+
# cannot be used with gatedconv, also gatedconv is alsways used as the first block
|
171 |
+
self.skip_connection = nn.Identity()
|
172 |
+
else:
|
173 |
+
if conf.use_conv:
|
174 |
+
kernel_size = 3
|
175 |
+
padding = 1
|
176 |
+
else:
|
177 |
+
kernel_size = 1
|
178 |
+
padding = 0
|
179 |
+
|
180 |
+
self.skip_connection = conv_nd(conf.dims,
|
181 |
+
conf.channels,
|
182 |
+
conf.out_channels,
|
183 |
+
kernel_size,
|
184 |
+
padding=padding)
|
185 |
+
|
186 |
+
def forward(self, x, emb=None, cond=None, lateral=None):
|
187 |
+
"""
|
188 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
x: input
|
192 |
+
lateral: lateral connection from the encoder
|
193 |
+
"""
|
194 |
+
return torch_checkpoint(self._forward, (x, emb, cond, lateral),
|
195 |
+
self.conf.use_checkpoint)
|
196 |
+
|
197 |
+
def _forward(
|
198 |
+
self,
|
199 |
+
x,
|
200 |
+
emb=None,
|
201 |
+
cond=None,
|
202 |
+
lateral=None,
|
203 |
+
):
|
204 |
+
"""
|
205 |
+
Args:
|
206 |
+
lateral: required if "has_lateral" and non-gated, with gated, it can be supplied optionally
|
207 |
+
"""
|
208 |
+
if self.conf.has_lateral:
|
209 |
+
# lateral may be supplied even if it doesn't require
|
210 |
+
# the model will take the lateral only if "has_lateral"
|
211 |
+
assert lateral is not None
|
212 |
+
x = th.cat([x, lateral], dim=1)
|
213 |
+
|
214 |
+
if self.updown:
|
215 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
216 |
+
h = in_rest(x)
|
217 |
+
h = self.h_upd(h)
|
218 |
+
x = self.x_upd(x)
|
219 |
+
h = in_conv(h)
|
220 |
+
else:
|
221 |
+
h = self.in_layers(x)
|
222 |
+
|
223 |
+
if self.conf.use_condition:
|
224 |
+
# it's possible that the network may not receieve the time emb
|
225 |
+
# this happens with autoenc and setting the time_at
|
226 |
+
if emb is not None:
|
227 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
228 |
+
else:
|
229 |
+
emb_out = None
|
230 |
+
|
231 |
+
if self.conf.two_cond:
|
232 |
+
# it's possible that the network is two_cond
|
233 |
+
# but it doesn't get the second condition
|
234 |
+
# in which case, we ignore the second condition
|
235 |
+
# and treat as if the network has one condition
|
236 |
+
if cond is None:
|
237 |
+
cond_out = None
|
238 |
+
else:
|
239 |
+
cond_out = self.cond_emb_layers(cond).type(h.dtype)
|
240 |
+
|
241 |
+
if cond_out is not None:
|
242 |
+
while len(cond_out.shape) < len(h.shape):
|
243 |
+
cond_out = cond_out[..., None]
|
244 |
+
else:
|
245 |
+
cond_out = None
|
246 |
+
|
247 |
+
# this is the new refactored code
|
248 |
+
h = apply_conditions(
|
249 |
+
h=h,
|
250 |
+
emb=emb_out,
|
251 |
+
cond=cond_out,
|
252 |
+
layers=self.out_layers,
|
253 |
+
scale_bias=1,
|
254 |
+
in_channels=self.conf.out_channels,
|
255 |
+
up_down_layer=None,
|
256 |
+
)
|
257 |
+
|
258 |
+
return self.skip_connection(x) + h
|
259 |
+
|
260 |
+
|
261 |
+
def apply_conditions(
|
262 |
+
h,
|
263 |
+
emb=None,
|
264 |
+
cond=None,
|
265 |
+
layers: nn.Sequential = None,
|
266 |
+
scale_bias: float = 1,
|
267 |
+
in_channels: int = 512,
|
268 |
+
up_down_layer: nn.Module = None,
|
269 |
+
):
|
270 |
+
"""
|
271 |
+
apply conditions on the feature maps
|
272 |
+
|
273 |
+
Args:
|
274 |
+
emb: time conditional (ready to scale + shift)
|
275 |
+
cond: encoder's conditional (read to scale + shift)
|
276 |
+
"""
|
277 |
+
two_cond = emb is not None and cond is not None
|
278 |
+
|
279 |
+
if emb is not None:
|
280 |
+
# adjusting shapes
|
281 |
+
while len(emb.shape) < len(h.shape):
|
282 |
+
emb = emb[..., None]
|
283 |
+
|
284 |
+
if two_cond:
|
285 |
+
# adjusting shapes
|
286 |
+
while len(cond.shape) < len(h.shape):
|
287 |
+
cond = cond[..., None]
|
288 |
+
# time first
|
289 |
+
scale_shifts = [emb, cond]
|
290 |
+
else:
|
291 |
+
# "cond" is not used with single cond mode
|
292 |
+
scale_shifts = [emb]
|
293 |
+
|
294 |
+
# support scale, shift or shift only
|
295 |
+
for i, each in enumerate(scale_shifts):
|
296 |
+
if each is None:
|
297 |
+
# special case: the condition is not provided
|
298 |
+
a = None
|
299 |
+
b = None
|
300 |
+
else:
|
301 |
+
if each.shape[1] == in_channels * 2:
|
302 |
+
a, b = th.chunk(each, 2, dim=1)
|
303 |
+
else:
|
304 |
+
a = each
|
305 |
+
b = None
|
306 |
+
scale_shifts[i] = (a, b)
|
307 |
+
|
308 |
+
# condition scale bias could be a list
|
309 |
+
if isinstance(scale_bias, Number):
|
310 |
+
biases = [scale_bias] * len(scale_shifts)
|
311 |
+
else:
|
312 |
+
# a list
|
313 |
+
biases = scale_bias
|
314 |
+
|
315 |
+
# default, the scale & shift are applied after the group norm but BEFORE SiLU
|
316 |
+
pre_layers, post_layers = layers[0], layers[1:]
|
317 |
+
|
318 |
+
# spilt the post layer to be able to scale up or down before conv
|
319 |
+
# post layers will contain only the conv
|
320 |
+
mid_layers, post_layers = post_layers[:-2], post_layers[-2:]
|
321 |
+
|
322 |
+
h = pre_layers(h)
|
323 |
+
# scale and shift for each condition
|
324 |
+
for i, (scale, shift) in enumerate(scale_shifts):
|
325 |
+
# if scale is None, it indicates that the condition is not provided
|
326 |
+
if scale is not None:
|
327 |
+
h = h * (biases[i] + scale)
|
328 |
+
if shift is not None:
|
329 |
+
h = h + shift
|
330 |
+
h = mid_layers(h)
|
331 |
+
|
332 |
+
# upscale or downscale if any just before the last conv
|
333 |
+
if up_down_layer is not None:
|
334 |
+
h = up_down_layer(h)
|
335 |
+
h = post_layers(h)
|
336 |
+
return h
|
337 |
+
|
338 |
+
|
339 |
+
class Upsample(nn.Module):
|
340 |
+
"""
|
341 |
+
An upsampling layer with an optional convolution.
|
342 |
+
|
343 |
+
:param channels: channels in the inputs and outputs.
|
344 |
+
:param use_conv: a bool determining if a convolution is applied.
|
345 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
346 |
+
upsampling occurs in the inner-two dimensions.
|
347 |
+
"""
|
348 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
349 |
+
super().__init__()
|
350 |
+
self.channels = channels
|
351 |
+
self.out_channels = out_channels or channels
|
352 |
+
self.use_conv = use_conv
|
353 |
+
self.dims = dims
|
354 |
+
if use_conv:
|
355 |
+
self.conv = conv_nd(dims,
|
356 |
+
self.channels,
|
357 |
+
self.out_channels,
|
358 |
+
3,
|
359 |
+
padding=1)
|
360 |
+
|
361 |
+
def forward(self, x):
|
362 |
+
assert x.shape[1] == self.channels
|
363 |
+
if self.dims == 3:
|
364 |
+
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2),
|
365 |
+
mode="nearest")
|
366 |
+
else:
|
367 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
368 |
+
if self.use_conv:
|
369 |
+
x = self.conv(x)
|
370 |
+
return x
|
371 |
+
|
372 |
+
|
373 |
+
class Downsample(nn.Module):
|
374 |
+
"""
|
375 |
+
A downsampling layer with an optional convolution.
|
376 |
+
|
377 |
+
:param channels: channels in the inputs and outputs.
|
378 |
+
:param use_conv: a bool determining if a convolution is applied.
|
379 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
380 |
+
downsampling occurs in the inner-two dimensions.
|
381 |
+
"""
|
382 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
383 |
+
super().__init__()
|
384 |
+
self.channels = channels
|
385 |
+
self.out_channels = out_channels or channels
|
386 |
+
self.use_conv = use_conv
|
387 |
+
self.dims = dims
|
388 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
389 |
+
if use_conv:
|
390 |
+
self.op = conv_nd(dims,
|
391 |
+
self.channels,
|
392 |
+
self.out_channels,
|
393 |
+
3,
|
394 |
+
stride=stride,
|
395 |
+
padding=1)
|
396 |
+
else:
|
397 |
+
assert self.channels == self.out_channels
|
398 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
399 |
+
|
400 |
+
def forward(self, x):
|
401 |
+
assert x.shape[1] == self.channels
|
402 |
+
return self.op(x)
|
403 |
+
|
404 |
+
|
405 |
+
class AttentionBlock(nn.Module):
|
406 |
+
"""
|
407 |
+
An attention block that allows spatial positions to attend to each other.
|
408 |
+
|
409 |
+
Originally ported from here, but adapted to the N-d case.
|
410 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
411 |
+
"""
|
412 |
+
def __init__(
|
413 |
+
self,
|
414 |
+
channels,
|
415 |
+
num_heads=1,
|
416 |
+
num_head_channels=-1,
|
417 |
+
group_norm_limit=32,
|
418 |
+
use_checkpoint=False,
|
419 |
+
use_new_attention_order=False,
|
420 |
+
):
|
421 |
+
super().__init__()
|
422 |
+
self.channels = channels
|
423 |
+
if num_head_channels == -1:
|
424 |
+
self.num_heads = num_heads
|
425 |
+
else:
|
426 |
+
assert (
|
427 |
+
channels % num_head_channels == 0
|
428 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
429 |
+
self.num_heads = channels // num_head_channels
|
430 |
+
self.use_checkpoint = use_checkpoint
|
431 |
+
self.norm = normalization(channels, limit=group_norm_limit)
|
432 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
433 |
+
if use_new_attention_order:
|
434 |
+
# split qkv before split heads
|
435 |
+
self.attention = QKVAttention(self.num_heads)
|
436 |
+
else:
|
437 |
+
# split heads before split qkv
|
438 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
439 |
+
|
440 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
441 |
+
|
442 |
+
def forward(self, x):
|
443 |
+
return torch_checkpoint(self._forward, (x, ), self.use_checkpoint)
|
444 |
+
|
445 |
+
def _forward(self, x):
|
446 |
+
b, c, *spatial = x.shape
|
447 |
+
x = x.reshape(b, c, -1)
|
448 |
+
qkv = self.qkv(self.norm(x))
|
449 |
+
h = self.attention(qkv)
|
450 |
+
h = self.proj_out(h)
|
451 |
+
return (x + h).reshape(b, c, *spatial)
|
452 |
+
|
453 |
+
|
454 |
+
def count_flops_attn(model, _x, y):
|
455 |
+
"""
|
456 |
+
A counter for the `thop` package to count the operations in an
|
457 |
+
attention operation.
|
458 |
+
Meant to be used like:
|
459 |
+
macs, params = thop.profile(
|
460 |
+
model,
|
461 |
+
inputs=(inputs, timestamps),
|
462 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
463 |
+
)
|
464 |
+
"""
|
465 |
+
b, c, *spatial = y[0].shape
|
466 |
+
num_spatial = int(np.prod(spatial))
|
467 |
+
# We perform two matmuls with the same number of ops.
|
468 |
+
# The first computes the weight matrix, the second computes
|
469 |
+
# the combination of the value vectors.
|
470 |
+
matmul_ops = 2 * b * (num_spatial**2) * c
|
471 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
472 |
+
|
473 |
+
|
474 |
+
class QKVAttentionLegacy(nn.Module):
|
475 |
+
"""
|
476 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
477 |
+
"""
|
478 |
+
def __init__(self, n_heads):
|
479 |
+
super().__init__()
|
480 |
+
self.n_heads = n_heads
|
481 |
+
|
482 |
+
def forward(self, qkv):
|
483 |
+
"""
|
484 |
+
Apply QKV attention.
|
485 |
+
|
486 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
487 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
488 |
+
"""
|
489 |
+
bs, width, length = qkv.shape
|
490 |
+
assert width % (3 * self.n_heads) == 0
|
491 |
+
ch = width // (3 * self.n_heads)
|
492 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch,
|
493 |
+
dim=1)
|
494 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
495 |
+
weight = th.einsum(
|
496 |
+
"bct,bcs->bts", q * scale,
|
497 |
+
k * scale) # More stable with f16 than dividing afterwards
|
498 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
499 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
500 |
+
return a.reshape(bs, -1, length)
|
501 |
+
|
502 |
+
@staticmethod
|
503 |
+
def count_flops(model, _x, y):
|
504 |
+
return count_flops_attn(model, _x, y)
|
505 |
+
|
506 |
+
|
507 |
+
class QKVAttention(nn.Module):
|
508 |
+
"""
|
509 |
+
A module which performs QKV attention and splits in a different order.
|
510 |
+
"""
|
511 |
+
def __init__(self, n_heads):
|
512 |
+
super().__init__()
|
513 |
+
self.n_heads = n_heads
|
514 |
+
|
515 |
+
def forward(self, qkv):
|
516 |
+
"""
|
517 |
+
Apply QKV attention.
|
518 |
+
|
519 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
520 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
521 |
+
"""
|
522 |
+
bs, width, length = qkv.shape
|
523 |
+
assert width % (3 * self.n_heads) == 0
|
524 |
+
ch = width // (3 * self.n_heads)
|
525 |
+
q, k, v = qkv.chunk(3, dim=1)
|
526 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
527 |
+
weight = th.einsum(
|
528 |
+
"bct,bcs->bts",
|
529 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
530 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
531 |
+
) # More stable with f16 than dividing afterwards
|
532 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
533 |
+
a = th.einsum("bts,bcs->bct", weight,
|
534 |
+
v.reshape(bs * self.n_heads, ch, length))
|
535 |
+
return a.reshape(bs, -1, length)
|
536 |
+
|
537 |
+
@staticmethod
|
538 |
+
def count_flops(model, _x, y):
|
539 |
+
return count_flops_attn(model, _x, y)
|
540 |
+
|
541 |
+
|
542 |
+
class AttentionPool2d(nn.Module):
|
543 |
+
"""
|
544 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
545 |
+
"""
|
546 |
+
def __init__(
|
547 |
+
self,
|
548 |
+
spacial_dim: int,
|
549 |
+
embed_dim: int,
|
550 |
+
num_heads_channels: int,
|
551 |
+
output_dim: int = None,
|
552 |
+
):
|
553 |
+
super().__init__()
|
554 |
+
self.positional_embedding = nn.Parameter(
|
555 |
+
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5)
|
556 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
557 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
558 |
+
self.num_heads = embed_dim // num_heads_channels
|
559 |
+
self.attention = QKVAttention(self.num_heads)
|
560 |
+
|
561 |
+
def forward(self, x):
|
562 |
+
b, c, *_spatial = x.shape
|
563 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
564 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
565 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
566 |
+
x = self.qkv_proj(x)
|
567 |
+
x = self.attention(x)
|
568 |
+
x = self.c_proj(x)
|
569 |
+
return x[:, :, 0]
|
DiffAE_model_latentnet.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from enum import Enum
|
4 |
+
from typing import NamedTuple, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from .DiffAE_support_choices import *
|
8 |
+
from .DiffAE_support_config_base import BaseConfig
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import init
|
11 |
+
|
12 |
+
from .DiffAE_model_blocks import *
|
13 |
+
from .DiffAE_model_nn import timestep_embedding
|
14 |
+
from .DiffAE_model_unet import *
|
15 |
+
|
16 |
+
|
17 |
+
class LatentNetType(Enum):
|
18 |
+
none = 'none'
|
19 |
+
# injecting inputs into the hidden layers
|
20 |
+
skip = 'skip'
|
21 |
+
|
22 |
+
|
23 |
+
class LatentNetReturn(NamedTuple):
|
24 |
+
pred: torch.Tensor = None
|
25 |
+
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class MLPSkipNetConfig(BaseConfig):
|
29 |
+
"""
|
30 |
+
default MLP for the latent DPM in the paper!
|
31 |
+
"""
|
32 |
+
num_channels: int
|
33 |
+
skip_layers: Tuple[int]
|
34 |
+
num_hid_channels: int
|
35 |
+
num_layers: int
|
36 |
+
num_time_emb_channels: int = 64
|
37 |
+
activation: Activation = Activation.silu
|
38 |
+
use_norm: bool = True
|
39 |
+
condition_bias: float = 1
|
40 |
+
dropout: float = 0
|
41 |
+
last_act: Activation = Activation.none
|
42 |
+
num_time_layers: int = 2
|
43 |
+
time_last_act: bool = False
|
44 |
+
|
45 |
+
def make_model(self):
|
46 |
+
return MLPSkipNet(self)
|
47 |
+
|
48 |
+
|
49 |
+
class MLPSkipNet(nn.Module):
|
50 |
+
"""
|
51 |
+
concat x to hidden layers
|
52 |
+
|
53 |
+
default MLP for the latent DPM in the paper!
|
54 |
+
"""
|
55 |
+
def __init__(self, conf: MLPSkipNetConfig):
|
56 |
+
super().__init__()
|
57 |
+
self.conf = conf
|
58 |
+
|
59 |
+
layers = []
|
60 |
+
for i in range(conf.num_time_layers):
|
61 |
+
if i == 0:
|
62 |
+
a = conf.num_time_emb_channels
|
63 |
+
b = conf.num_channels
|
64 |
+
else:
|
65 |
+
a = conf.num_channels
|
66 |
+
b = conf.num_channels
|
67 |
+
layers.append(nn.Linear(a, b))
|
68 |
+
if i < conf.num_time_layers - 1 or conf.time_last_act:
|
69 |
+
layers.append(conf.activation.get_act())
|
70 |
+
self.time_embed = nn.Sequential(*layers)
|
71 |
+
|
72 |
+
self.layers = nn.ModuleList([])
|
73 |
+
for i in range(conf.num_layers):
|
74 |
+
if i == 0:
|
75 |
+
act = conf.activation
|
76 |
+
norm = conf.use_norm
|
77 |
+
cond = True
|
78 |
+
a, b = conf.num_channels, conf.num_hid_channels
|
79 |
+
dropout = conf.dropout
|
80 |
+
elif i == conf.num_layers - 1:
|
81 |
+
act = Activation.none
|
82 |
+
norm = False
|
83 |
+
cond = False
|
84 |
+
a, b = conf.num_hid_channels, conf.num_channels
|
85 |
+
dropout = 0
|
86 |
+
else:
|
87 |
+
act = conf.activation
|
88 |
+
norm = conf.use_norm
|
89 |
+
cond = True
|
90 |
+
a, b = conf.num_hid_channels, conf.num_hid_channels
|
91 |
+
dropout = conf.dropout
|
92 |
+
|
93 |
+
if i in conf.skip_layers:
|
94 |
+
a += conf.num_channels
|
95 |
+
|
96 |
+
self.layers.append(
|
97 |
+
MLPLNAct(
|
98 |
+
a,
|
99 |
+
b,
|
100 |
+
norm=norm,
|
101 |
+
activation=act,
|
102 |
+
cond_channels=conf.num_channels,
|
103 |
+
use_cond=cond,
|
104 |
+
condition_bias=conf.condition_bias,
|
105 |
+
dropout=dropout,
|
106 |
+
))
|
107 |
+
self.last_act = conf.last_act.get_act()
|
108 |
+
|
109 |
+
def forward(self, x, t, **kwargs):
|
110 |
+
t = timestep_embedding(t, self.conf.num_time_emb_channels)
|
111 |
+
cond = self.time_embed(t)
|
112 |
+
h = x
|
113 |
+
for i in range(len(self.layers)):
|
114 |
+
if i in self.conf.skip_layers:
|
115 |
+
# injecting input into the hidden layers
|
116 |
+
h = torch.cat([h, x], dim=1)
|
117 |
+
h = self.layers[i].forward(x=h, cond=cond)
|
118 |
+
h = self.last_act(h)
|
119 |
+
return LatentNetReturn(h)
|
120 |
+
|
121 |
+
|
122 |
+
class MLPLNAct(nn.Module):
|
123 |
+
def __init__(
|
124 |
+
self,
|
125 |
+
in_channels: int,
|
126 |
+
out_channels: int,
|
127 |
+
norm: bool,
|
128 |
+
use_cond: bool,
|
129 |
+
activation: Activation,
|
130 |
+
cond_channels: int,
|
131 |
+
condition_bias: float = 0,
|
132 |
+
dropout: float = 0,
|
133 |
+
):
|
134 |
+
super().__init__()
|
135 |
+
self.activation = activation
|
136 |
+
self.condition_bias = condition_bias
|
137 |
+
self.use_cond = use_cond
|
138 |
+
|
139 |
+
self.linear = nn.Linear(in_channels, out_channels)
|
140 |
+
self.act = activation.get_act()
|
141 |
+
if self.use_cond:
|
142 |
+
self.linear_emb = nn.Linear(cond_channels, out_channels)
|
143 |
+
self.cond_layers = nn.Sequential(self.act, self.linear_emb)
|
144 |
+
if norm:
|
145 |
+
self.norm = nn.LayerNorm(out_channels)
|
146 |
+
else:
|
147 |
+
self.norm = nn.Identity()
|
148 |
+
|
149 |
+
if dropout > 0:
|
150 |
+
self.dropout = nn.Dropout(p=dropout)
|
151 |
+
else:
|
152 |
+
self.dropout = nn.Identity()
|
153 |
+
|
154 |
+
self.init_weights()
|
155 |
+
|
156 |
+
def init_weights(self):
|
157 |
+
for module in self.modules():
|
158 |
+
if isinstance(module, nn.Linear):
|
159 |
+
if self.activation == Activation.relu:
|
160 |
+
init.kaiming_normal_(module.weight,
|
161 |
+
a=0,
|
162 |
+
nonlinearity='relu')
|
163 |
+
elif self.activation == Activation.lrelu:
|
164 |
+
init.kaiming_normal_(module.weight,
|
165 |
+
a=0.2,
|
166 |
+
nonlinearity='leaky_relu')
|
167 |
+
elif self.activation == Activation.silu:
|
168 |
+
init.kaiming_normal_(module.weight,
|
169 |
+
a=0,
|
170 |
+
nonlinearity='relu')
|
171 |
+
else:
|
172 |
+
# leave it as default
|
173 |
+
pass
|
174 |
+
|
175 |
+
def forward(self, x, cond=None):
|
176 |
+
x = self.linear(x)
|
177 |
+
if self.use_cond:
|
178 |
+
# (n, c) or (n, c * 2)
|
179 |
+
cond = self.cond_layers(cond)
|
180 |
+
cond = (cond, None)
|
181 |
+
|
182 |
+
# scale shift first
|
183 |
+
x = x * (self.condition_bias + cond[0])
|
184 |
+
if cond[1] is not None:
|
185 |
+
x = x + cond[1]
|
186 |
+
# then norm
|
187 |
+
x = self.norm(x)
|
188 |
+
else:
|
189 |
+
# no condition
|
190 |
+
x = self.norm(x)
|
191 |
+
x = self.act(x)
|
192 |
+
x = self.dropout(x)
|
193 |
+
return x
|
DiffAE_model_nn.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Various utilities for neural networks.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from enum import Enum
|
6 |
+
import math
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
import torch as th
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
|
16 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
17 |
+
class SiLU(nn.Module):
|
18 |
+
# @th.jit.script
|
19 |
+
def forward(self, x):
|
20 |
+
return x * th.sigmoid(x)
|
21 |
+
|
22 |
+
|
23 |
+
class GroupNorm32(nn.GroupNorm):
|
24 |
+
def forward(self, x):
|
25 |
+
return super().forward(x.float()).type(x.dtype)
|
26 |
+
|
27 |
+
|
28 |
+
def conv_nd(dims, *args, **kwargs):
|
29 |
+
"""
|
30 |
+
Create a 1D, 2D, or 3D convolution module.
|
31 |
+
"""
|
32 |
+
if dims == 1:
|
33 |
+
return nn.Conv1d(*args, **kwargs)
|
34 |
+
elif dims == 2:
|
35 |
+
return nn.Conv2d(*args, **kwargs)
|
36 |
+
elif dims == 3:
|
37 |
+
return nn.Conv3d(*args, **kwargs)
|
38 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
39 |
+
|
40 |
+
|
41 |
+
def linear(*args, **kwargs):
|
42 |
+
"""
|
43 |
+
Create a linear module.
|
44 |
+
"""
|
45 |
+
return nn.Linear(*args, **kwargs)
|
46 |
+
|
47 |
+
|
48 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
49 |
+
"""
|
50 |
+
Create a 1D, 2D, or 3D average pooling module.
|
51 |
+
"""
|
52 |
+
if dims == 1:
|
53 |
+
return nn.AvgPool1d(*args, **kwargs)
|
54 |
+
elif dims == 2:
|
55 |
+
return nn.AvgPool2d(*args, **kwargs)
|
56 |
+
elif dims == 3:
|
57 |
+
return nn.AvgPool3d(*args, **kwargs)
|
58 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
59 |
+
|
60 |
+
|
61 |
+
def update_ema(target_params, source_params, rate=0.99):
|
62 |
+
"""
|
63 |
+
Update target parameters to be closer to those of source parameters using
|
64 |
+
an exponential moving average.
|
65 |
+
|
66 |
+
:param target_params: the target parameter sequence.
|
67 |
+
:param source_params: the source parameter sequence.
|
68 |
+
:param rate: the EMA rate (closer to 1 means slower).
|
69 |
+
"""
|
70 |
+
for targ, src in zip(target_params, source_params):
|
71 |
+
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
|
72 |
+
|
73 |
+
|
74 |
+
def zero_module(module):
|
75 |
+
"""
|
76 |
+
Zero out the parameters of a module and return it.
|
77 |
+
"""
|
78 |
+
for p in module.parameters():
|
79 |
+
p.detach().zero_()
|
80 |
+
return module
|
81 |
+
|
82 |
+
|
83 |
+
def scale_module(module, scale):
|
84 |
+
"""
|
85 |
+
Scale the parameters of a module and return it.
|
86 |
+
"""
|
87 |
+
for p in module.parameters():
|
88 |
+
p.detach().mul_(scale)
|
89 |
+
return module
|
90 |
+
|
91 |
+
|
92 |
+
def mean_flat(tensor):
|
93 |
+
"""
|
94 |
+
Take the mean over all non-batch dimensions.
|
95 |
+
"""
|
96 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
97 |
+
|
98 |
+
|
99 |
+
def normalization(channels, limit=32):
|
100 |
+
"""
|
101 |
+
Make a standard normalization layer.
|
102 |
+
|
103 |
+
:param channels: number of input channels.
|
104 |
+
:param limit: the maximum number of groups. It's required if the number of net_channel is too small. Default: 32 (Added by Soumick, default from original)
|
105 |
+
:return: an nn.Module for normalization.
|
106 |
+
"""
|
107 |
+
return GroupNorm32(min(limit, channels), channels)
|
108 |
+
|
109 |
+
|
110 |
+
def timestep_embedding(timesteps, dim, max_period=10000):
|
111 |
+
"""
|
112 |
+
Create sinusoidal timestep embeddings.
|
113 |
+
|
114 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
115 |
+
These may be fractional.
|
116 |
+
:param dim: the dimension of the output.
|
117 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
118 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
119 |
+
"""
|
120 |
+
half = dim // 2
|
121 |
+
freqs = th.exp(-math.log(max_period) *
|
122 |
+
th.arange(start=0, end=half, dtype=th.float32) /
|
123 |
+
half).to(device=timesteps.device)
|
124 |
+
args = timesteps[:, None].float() * freqs[None]
|
125 |
+
embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
|
126 |
+
if dim % 2:
|
127 |
+
embedding = th.cat(
|
128 |
+
[embedding, th.zeros_like(embedding[:, :1])], dim=-1)
|
129 |
+
return embedding
|
130 |
+
|
131 |
+
|
132 |
+
def torch_checkpoint(func, args, flag, preserve_rng_state=False):
|
133 |
+
# torch's gradient checkpoint works with automatic mixed precision, given torch >= 1.8
|
134 |
+
if flag:
|
135 |
+
return torch.utils.checkpoint.checkpoint(
|
136 |
+
func, *args, preserve_rng_state=preserve_rng_state)
|
137 |
+
else:
|
138 |
+
return func(*args)
|
DiffAE_model_unet.py
ADDED
@@ -0,0 +1,569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from numbers import Number
|
4 |
+
from typing import NamedTuple, Tuple, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
from torch import nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from .DiffAE_support_choices import *
|
11 |
+
from .DiffAE_support_config_base import BaseConfig
|
12 |
+
from .DiffAE_model_blocks import *
|
13 |
+
|
14 |
+
from .DiffAE_model_nn import (conv_nd, linear, normalization, timestep_embedding,
|
15 |
+
torch_checkpoint, zero_module)
|
16 |
+
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class BeatGANsUNetConfig(BaseConfig):
|
20 |
+
image_size: int = 64
|
21 |
+
in_channels: int = 3
|
22 |
+
# base channels, will be multiplied
|
23 |
+
model_channels: int = 64
|
24 |
+
# output of the unet
|
25 |
+
# suggest: 3
|
26 |
+
# you only need 6 if you also model the variance of the noise prediction (usually we use an analytical variance hence 3)
|
27 |
+
out_channels: int = 3
|
28 |
+
# how many repeating resblocks per resolution
|
29 |
+
# the decoding side would have "one more" resblock
|
30 |
+
# default: 2
|
31 |
+
num_res_blocks: int = 2
|
32 |
+
# you can also set the number of resblocks specifically for the input blocks
|
33 |
+
# default: None = above
|
34 |
+
num_input_res_blocks: int = None
|
35 |
+
# number of time embed channels and style channels
|
36 |
+
embed_channels: int = 512
|
37 |
+
# at what resolutions you want to do self-attention of the feature maps
|
38 |
+
# attentions generally improve performance
|
39 |
+
# default: [16]
|
40 |
+
# beatgans: [32, 16, 8]
|
41 |
+
attention_resolutions: Tuple[int] = (16, )
|
42 |
+
# number of time embed channels
|
43 |
+
time_embed_channels: int = None
|
44 |
+
# dropout applies to the resblocks (on feature maps)
|
45 |
+
dropout: float = 0.1
|
46 |
+
channel_mult: Tuple[int] = (1, 2, 4, 8)
|
47 |
+
input_channel_mult: Tuple[int] = None
|
48 |
+
conv_resample: bool = True
|
49 |
+
group_norm_limit: int = 32
|
50 |
+
# always 2 = 2d conv
|
51 |
+
dims: int = 2
|
52 |
+
# don't use this, legacy from BeatGANs
|
53 |
+
num_classes: int = None
|
54 |
+
use_checkpoint: bool = False
|
55 |
+
# number of attention heads
|
56 |
+
num_heads: int = 1
|
57 |
+
# or specify the number of channels per attention head
|
58 |
+
num_head_channels: int = -1
|
59 |
+
# what's this?
|
60 |
+
num_heads_upsample: int = -1
|
61 |
+
# use resblock for upscale/downscale blocks (expensive)
|
62 |
+
# default: True (BeatGANs)
|
63 |
+
resblock_updown: bool = True
|
64 |
+
# never tried
|
65 |
+
use_new_attention_order: bool = False
|
66 |
+
resnet_two_cond: bool = False
|
67 |
+
resnet_cond_channels: int = None
|
68 |
+
# init the decoding conv layers with zero weights, this speeds up training
|
69 |
+
# default: True (BeattGANs)
|
70 |
+
resnet_use_zero_module: bool = True
|
71 |
+
# gradient checkpoint the attention operation
|
72 |
+
attn_checkpoint: bool = False
|
73 |
+
|
74 |
+
def make_model(self):
|
75 |
+
return BeatGANsUNetModel(self)
|
76 |
+
|
77 |
+
|
78 |
+
class BeatGANsUNetModel(nn.Module):
|
79 |
+
def __init__(self, conf: BeatGANsUNetConfig):
|
80 |
+
super().__init__()
|
81 |
+
self.conf = conf
|
82 |
+
|
83 |
+
if conf.num_heads_upsample == -1:
|
84 |
+
self.num_heads_upsample = conf.num_heads
|
85 |
+
|
86 |
+
self.dtype = th.float32
|
87 |
+
|
88 |
+
self.time_emb_channels = conf.time_embed_channels or conf.model_channels
|
89 |
+
self.time_embed = nn.Sequential(
|
90 |
+
linear(self.time_emb_channels, conf.embed_channels),
|
91 |
+
nn.SiLU(),
|
92 |
+
linear(conf.embed_channels, conf.embed_channels),
|
93 |
+
)
|
94 |
+
|
95 |
+
if conf.num_classes is not None:
|
96 |
+
self.label_emb = nn.Embedding(conf.num_classes,
|
97 |
+
conf.embed_channels)
|
98 |
+
|
99 |
+
ch = input_ch = int(conf.channel_mult[0] * conf.model_channels)
|
100 |
+
self.input_blocks = nn.ModuleList([
|
101 |
+
TimestepEmbedSequential(
|
102 |
+
conv_nd(conf.dims, conf.in_channels, ch, 3, padding=1))
|
103 |
+
])
|
104 |
+
|
105 |
+
kwargs = dict(
|
106 |
+
use_condition=True,
|
107 |
+
two_cond=conf.resnet_two_cond,
|
108 |
+
use_zero_module=conf.resnet_use_zero_module,
|
109 |
+
# style channels for the resnet block
|
110 |
+
cond_emb_channels=conf.resnet_cond_channels,
|
111 |
+
)
|
112 |
+
|
113 |
+
self._feature_size = ch
|
114 |
+
|
115 |
+
# input_block_chans = [ch]
|
116 |
+
input_block_chans = [[] for _ in range(len(conf.channel_mult))]
|
117 |
+
input_block_chans[0].append(ch)
|
118 |
+
|
119 |
+
# number of blocks at each resolution
|
120 |
+
self.input_num_blocks = [0 for _ in range(len(conf.channel_mult))]
|
121 |
+
self.input_num_blocks[0] = 1
|
122 |
+
self.output_num_blocks = [0 for _ in range(len(conf.channel_mult))]
|
123 |
+
|
124 |
+
ds = 1
|
125 |
+
resolution = conf.image_size
|
126 |
+
for level, mult in enumerate(conf.input_channel_mult
|
127 |
+
or conf.channel_mult):
|
128 |
+
for _ in range(conf.num_input_res_blocks or conf.num_res_blocks):
|
129 |
+
layers = [
|
130 |
+
ResBlockConfig(
|
131 |
+
ch,
|
132 |
+
conf.embed_channels,
|
133 |
+
conf.dropout,
|
134 |
+
out_channels=int(mult * conf.model_channels),
|
135 |
+
group_norm_limit=conf.group_norm_limit,
|
136 |
+
dims=conf.dims,
|
137 |
+
use_checkpoint=conf.use_checkpoint,
|
138 |
+
**kwargs,
|
139 |
+
).make_model()
|
140 |
+
]
|
141 |
+
ch = int(mult * conf.model_channels)
|
142 |
+
if resolution in conf.attention_resolutions:
|
143 |
+
layers.append(
|
144 |
+
AttentionBlock(
|
145 |
+
ch,
|
146 |
+
use_checkpoint=conf.use_checkpoint
|
147 |
+
or conf.attn_checkpoint,
|
148 |
+
num_heads=conf.num_heads,
|
149 |
+
num_head_channels=conf.num_head_channels,
|
150 |
+
group_norm_limit=conf.group_norm_limit,
|
151 |
+
use_new_attention_order=conf.
|
152 |
+
use_new_attention_order,
|
153 |
+
))
|
154 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
155 |
+
self._feature_size += ch
|
156 |
+
# input_block_chans.append(ch)
|
157 |
+
input_block_chans[level].append(ch)
|
158 |
+
self.input_num_blocks[level] += 1
|
159 |
+
# print(input_block_chans)
|
160 |
+
if level != len(conf.channel_mult) - 1:
|
161 |
+
resolution //= 2
|
162 |
+
out_ch = ch
|
163 |
+
self.input_blocks.append(
|
164 |
+
TimestepEmbedSequential(
|
165 |
+
ResBlockConfig(
|
166 |
+
ch,
|
167 |
+
conf.embed_channels,
|
168 |
+
conf.dropout,
|
169 |
+
out_channels=out_ch,
|
170 |
+
group_norm_limit=conf.group_norm_limit,
|
171 |
+
dims=conf.dims,
|
172 |
+
use_checkpoint=conf.use_checkpoint,
|
173 |
+
down=True,
|
174 |
+
**kwargs,
|
175 |
+
).make_model() if conf.
|
176 |
+
resblock_updown else Downsample(ch,
|
177 |
+
conf.conv_resample,
|
178 |
+
dims=conf.dims,
|
179 |
+
out_channels=out_ch)))
|
180 |
+
ch = out_ch
|
181 |
+
# input_block_chans.append(ch)
|
182 |
+
input_block_chans[level + 1].append(ch)
|
183 |
+
self.input_num_blocks[level + 1] += 1
|
184 |
+
ds *= 2
|
185 |
+
self._feature_size += ch
|
186 |
+
|
187 |
+
self.middle_block = TimestepEmbedSequential(
|
188 |
+
ResBlockConfig(
|
189 |
+
ch,
|
190 |
+
conf.embed_channels,
|
191 |
+
conf.dropout,
|
192 |
+
group_norm_limit=conf.group_norm_limit,
|
193 |
+
dims=conf.dims,
|
194 |
+
use_checkpoint=conf.use_checkpoint,
|
195 |
+
**kwargs,
|
196 |
+
).make_model(),
|
197 |
+
AttentionBlock(
|
198 |
+
ch,
|
199 |
+
use_checkpoint=conf.use_checkpoint or conf.attn_checkpoint,
|
200 |
+
num_heads=conf.num_heads,
|
201 |
+
num_head_channels=conf.num_head_channels,
|
202 |
+
group_norm_limit=conf.group_norm_limit,
|
203 |
+
use_new_attention_order=conf.use_new_attention_order,
|
204 |
+
),
|
205 |
+
ResBlockConfig(
|
206 |
+
ch,
|
207 |
+
conf.embed_channels,
|
208 |
+
conf.dropout,
|
209 |
+
group_norm_limit=conf.group_norm_limit,
|
210 |
+
dims=conf.dims,
|
211 |
+
use_checkpoint=conf.use_checkpoint,
|
212 |
+
**kwargs,
|
213 |
+
).make_model(),
|
214 |
+
)
|
215 |
+
self._feature_size += ch
|
216 |
+
|
217 |
+
self.output_blocks = nn.ModuleList([])
|
218 |
+
for level, mult in list(enumerate(conf.channel_mult))[::-1]:
|
219 |
+
for i in range(conf.num_res_blocks + 1):
|
220 |
+
# print(input_block_chans)
|
221 |
+
# ich = input_block_chans.pop()
|
222 |
+
try:
|
223 |
+
ich = input_block_chans[level].pop()
|
224 |
+
except IndexError:
|
225 |
+
# this happens only when num_res_block > num_enc_res_block
|
226 |
+
# we will not have enough lateral (skip) connecions for all decoder blocks
|
227 |
+
ich = 0
|
228 |
+
# print('pop:', ich)
|
229 |
+
layers = [
|
230 |
+
ResBlockConfig(
|
231 |
+
# only direct channels when gated
|
232 |
+
channels=ch + ich,
|
233 |
+
emb_channels=conf.embed_channels,
|
234 |
+
dropout=conf.dropout,
|
235 |
+
out_channels=int(conf.model_channels * mult),
|
236 |
+
group_norm_limit=conf.group_norm_limit,
|
237 |
+
dims=conf.dims,
|
238 |
+
use_checkpoint=conf.use_checkpoint,
|
239 |
+
# lateral channels are described here when gated
|
240 |
+
has_lateral=True if ich > 0 else False,
|
241 |
+
lateral_channels=None,
|
242 |
+
**kwargs,
|
243 |
+
).make_model()
|
244 |
+
]
|
245 |
+
ch = int(conf.model_channels * mult)
|
246 |
+
if resolution in conf.attention_resolutions:
|
247 |
+
layers.append(
|
248 |
+
AttentionBlock(
|
249 |
+
ch,
|
250 |
+
use_checkpoint=conf.use_checkpoint
|
251 |
+
or conf.attn_checkpoint,
|
252 |
+
num_heads=self.num_heads_upsample,
|
253 |
+
num_head_channels=conf.num_head_channels,
|
254 |
+
group_norm_limit=conf.group_norm_limit,
|
255 |
+
use_new_attention_order=conf.
|
256 |
+
use_new_attention_order,
|
257 |
+
))
|
258 |
+
if level and i == conf.num_res_blocks:
|
259 |
+
resolution *= 2
|
260 |
+
out_ch = ch
|
261 |
+
layers.append(
|
262 |
+
ResBlockConfig(
|
263 |
+
ch,
|
264 |
+
conf.embed_channels,
|
265 |
+
conf.dropout,
|
266 |
+
out_channels=out_ch,
|
267 |
+
group_norm_limit=conf.group_norm_limit,
|
268 |
+
dims=conf.dims,
|
269 |
+
use_checkpoint=conf.use_checkpoint,
|
270 |
+
up=True,
|
271 |
+
**kwargs,
|
272 |
+
).make_model() if (
|
273 |
+
conf.resblock_updown
|
274 |
+
) else Upsample(ch,
|
275 |
+
conf.conv_resample,
|
276 |
+
dims=conf.dims,
|
277 |
+
out_channels=out_ch))
|
278 |
+
ds //= 2
|
279 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
280 |
+
self.output_num_blocks[level] += 1
|
281 |
+
self._feature_size += ch
|
282 |
+
|
283 |
+
# print(input_block_chans)
|
284 |
+
# print('inputs:', self.input_num_blocks)
|
285 |
+
# print('outputs:', self.output_num_blocks)
|
286 |
+
|
287 |
+
if conf.resnet_use_zero_module:
|
288 |
+
self.out = nn.Sequential(
|
289 |
+
normalization(ch, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32),
|
290 |
+
nn.SiLU(),
|
291 |
+
zero_module(
|
292 |
+
conv_nd(conf.dims,
|
293 |
+
input_ch,
|
294 |
+
conf.out_channels,
|
295 |
+
3,
|
296 |
+
padding=1)),
|
297 |
+
)
|
298 |
+
else:
|
299 |
+
self.out = nn.Sequential(
|
300 |
+
normalization(ch, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32),
|
301 |
+
nn.SiLU(),
|
302 |
+
conv_nd(conf.dims, input_ch, conf.out_channels, 3, padding=1),
|
303 |
+
)
|
304 |
+
|
305 |
+
def forward(self, x, t, y=None, **kwargs):
|
306 |
+
"""
|
307 |
+
Apply the model to an input batch.
|
308 |
+
|
309 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
310 |
+
:param timesteps: a 1-D batch of timesteps.
|
311 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
312 |
+
:return: an [N x C x ...] Tensor of outputs.
|
313 |
+
"""
|
314 |
+
assert (y is not None) == (
|
315 |
+
self.conf.num_classes is not None
|
316 |
+
), "must specify y if and only if the model is class-conditional"
|
317 |
+
|
318 |
+
# hs = []
|
319 |
+
hs = [[] for _ in range(len(self.conf.channel_mult))]
|
320 |
+
emb = self.time_embed(timestep_embedding(t, self.time_emb_channels))
|
321 |
+
|
322 |
+
if self.conf.num_classes is not None:
|
323 |
+
raise NotImplementedError()
|
324 |
+
# assert y.shape == (x.shape[0], )
|
325 |
+
# emb = emb + self.label_emb(y)
|
326 |
+
|
327 |
+
# new code supports input_num_blocks != output_num_blocks
|
328 |
+
h = x.type(self.dtype)
|
329 |
+
k = 0
|
330 |
+
for i in range(len(self.input_num_blocks)):
|
331 |
+
for j in range(self.input_num_blocks[i]):
|
332 |
+
h = self.input_blocks[k](h, emb=emb)
|
333 |
+
# print(i, j, h.shape)
|
334 |
+
hs[i].append(h)
|
335 |
+
k += 1
|
336 |
+
assert k == len(self.input_blocks)
|
337 |
+
|
338 |
+
h = self.middle_block(h, emb=emb)
|
339 |
+
k = 0
|
340 |
+
for i in range(len(self.output_num_blocks)):
|
341 |
+
for j in range(self.output_num_blocks[i]):
|
342 |
+
# take the lateral connection from the same layer (in reserve)
|
343 |
+
# until there is no more, use None
|
344 |
+
try:
|
345 |
+
lateral = hs[-i - 1].pop()
|
346 |
+
# print(i, j, lateral.shape)
|
347 |
+
except IndexError:
|
348 |
+
lateral = None
|
349 |
+
# print(i, j, lateral)
|
350 |
+
h = self.output_blocks[k](h, emb=emb, lateral=lateral)
|
351 |
+
k += 1
|
352 |
+
|
353 |
+
h = h.type(x.dtype)
|
354 |
+
pred = self.out(h)
|
355 |
+
return Return(pred=pred)
|
356 |
+
|
357 |
+
|
358 |
+
class Return(NamedTuple):
|
359 |
+
pred: th.Tensor
|
360 |
+
|
361 |
+
|
362 |
+
@dataclass
|
363 |
+
class BeatGANsEncoderConfig(BaseConfig):
|
364 |
+
image_size: int
|
365 |
+
in_channels: int
|
366 |
+
model_channels: int
|
367 |
+
out_hid_channels: int
|
368 |
+
out_channels: int
|
369 |
+
num_res_blocks: int
|
370 |
+
attention_resolutions: Tuple[int]
|
371 |
+
dropout: float = 0
|
372 |
+
channel_mult: Tuple[int] = (1, 2, 4, 8)
|
373 |
+
use_time_condition: bool = True
|
374 |
+
conv_resample: bool = True
|
375 |
+
group_norm_limit: int = 32
|
376 |
+
dims: int = 2
|
377 |
+
use_checkpoint: bool = False
|
378 |
+
num_heads: int = 1
|
379 |
+
num_head_channels: int = -1
|
380 |
+
resblock_updown: bool = False
|
381 |
+
use_new_attention_order: bool = False
|
382 |
+
pool: str = 'adaptivenonzero'
|
383 |
+
|
384 |
+
def make_model(self):
|
385 |
+
return BeatGANsEncoderModel(self)
|
386 |
+
|
387 |
+
|
388 |
+
class BeatGANsEncoderModel(nn.Module):
|
389 |
+
"""
|
390 |
+
The half UNet model with attention and timestep embedding.
|
391 |
+
|
392 |
+
For usage, see UNet.
|
393 |
+
"""
|
394 |
+
def __init__(self, conf: BeatGANsEncoderConfig):
|
395 |
+
super().__init__()
|
396 |
+
self.conf = conf
|
397 |
+
self.dtype = th.float32
|
398 |
+
|
399 |
+
if conf.use_time_condition:
|
400 |
+
time_embed_dim = conf.model_channels * 4
|
401 |
+
self.time_embed = nn.Sequential(
|
402 |
+
linear(conf.model_channels, time_embed_dim),
|
403 |
+
nn.SiLU(),
|
404 |
+
linear(time_embed_dim, time_embed_dim),
|
405 |
+
)
|
406 |
+
else:
|
407 |
+
time_embed_dim = None
|
408 |
+
|
409 |
+
ch = int(conf.channel_mult[0] * conf.model_channels)
|
410 |
+
self.input_blocks = nn.ModuleList([
|
411 |
+
TimestepEmbedSequential(
|
412 |
+
conv_nd(conf.dims, conf.in_channels, ch, 3, padding=1))
|
413 |
+
])
|
414 |
+
self._feature_size = ch
|
415 |
+
input_block_chans = [ch]
|
416 |
+
ds = 1
|
417 |
+
resolution = conf.image_size
|
418 |
+
for level, mult in enumerate(conf.channel_mult):
|
419 |
+
for _ in range(conf.num_res_blocks):
|
420 |
+
layers = [
|
421 |
+
ResBlockConfig(
|
422 |
+
ch,
|
423 |
+
time_embed_dim,
|
424 |
+
conf.dropout,
|
425 |
+
out_channels=int(mult * conf.model_channels),
|
426 |
+
group_norm_limit=conf.group_norm_limit,
|
427 |
+
dims=conf.dims,
|
428 |
+
use_condition=conf.use_time_condition,
|
429 |
+
use_checkpoint=conf.use_checkpoint,
|
430 |
+
).make_model()
|
431 |
+
]
|
432 |
+
ch = int(mult * conf.model_channels)
|
433 |
+
if resolution in conf.attention_resolutions:
|
434 |
+
layers.append(
|
435 |
+
AttentionBlock(
|
436 |
+
ch,
|
437 |
+
use_checkpoint=conf.use_checkpoint,
|
438 |
+
num_heads=conf.num_heads,
|
439 |
+
num_head_channels=conf.num_head_channels,
|
440 |
+
group_norm_limit=conf.group_norm_limit,
|
441 |
+
use_new_attention_order=conf.
|
442 |
+
use_new_attention_order,
|
443 |
+
))
|
444 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
445 |
+
self._feature_size += ch
|
446 |
+
input_block_chans.append(ch)
|
447 |
+
if level != len(conf.channel_mult) - 1:
|
448 |
+
resolution //= 2
|
449 |
+
out_ch = ch
|
450 |
+
self.input_blocks.append(
|
451 |
+
TimestepEmbedSequential(
|
452 |
+
ResBlockConfig(
|
453 |
+
ch,
|
454 |
+
time_embed_dim,
|
455 |
+
conf.dropout,
|
456 |
+
out_channels=out_ch,
|
457 |
+
group_norm_limit=conf.group_norm_limit,
|
458 |
+
dims=conf.dims,
|
459 |
+
use_condition=conf.use_time_condition,
|
460 |
+
use_checkpoint=conf.use_checkpoint,
|
461 |
+
down=True,
|
462 |
+
).make_model() if (
|
463 |
+
conf.resblock_updown
|
464 |
+
) else Downsample(ch,
|
465 |
+
conf.conv_resample,
|
466 |
+
dims=conf.dims,
|
467 |
+
out_channels=out_ch)))
|
468 |
+
ch = out_ch
|
469 |
+
input_block_chans.append(ch)
|
470 |
+
ds *= 2
|
471 |
+
self._feature_size += ch
|
472 |
+
|
473 |
+
self.middle_block = TimestepEmbedSequential(
|
474 |
+
ResBlockConfig(
|
475 |
+
ch,
|
476 |
+
time_embed_dim,
|
477 |
+
conf.dropout,
|
478 |
+
group_norm_limit=conf.group_norm_limit,
|
479 |
+
dims=conf.dims,
|
480 |
+
use_condition=conf.use_time_condition,
|
481 |
+
use_checkpoint=conf.use_checkpoint,
|
482 |
+
).make_model(),
|
483 |
+
AttentionBlock(
|
484 |
+
ch,
|
485 |
+
use_checkpoint=conf.use_checkpoint,
|
486 |
+
num_heads=conf.num_heads,
|
487 |
+
num_head_channels=conf.num_head_channels,
|
488 |
+
group_norm_limit=conf.group_norm_limit,
|
489 |
+
use_new_attention_order=conf.use_new_attention_order,
|
490 |
+
),
|
491 |
+
ResBlockConfig(
|
492 |
+
ch,
|
493 |
+
time_embed_dim,
|
494 |
+
conf.dropout,
|
495 |
+
group_norm_limit=conf.group_norm_limit,
|
496 |
+
dims=conf.dims,
|
497 |
+
use_condition=conf.use_time_condition,
|
498 |
+
use_checkpoint=conf.use_checkpoint,
|
499 |
+
).make_model(),
|
500 |
+
)
|
501 |
+
self._feature_size += ch
|
502 |
+
if conf.pool == "adaptivenonzero":
|
503 |
+
self.out = nn.Sequential(
|
504 |
+
normalization(ch, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32),
|
505 |
+
nn.SiLU(),
|
506 |
+
nn.AdaptiveAvgPool2d((1, 1)) if conf.dims == 2 else nn.AdaptiveAvgPool3d((1, 1, 1)),
|
507 |
+
conv_nd(conf.dims, ch, conf.out_channels, 1),
|
508 |
+
nn.Flatten(),
|
509 |
+
)
|
510 |
+
else:
|
511 |
+
raise NotImplementedError(f"Unexpected {conf.pool} pooling")
|
512 |
+
|
513 |
+
def forward(self, x, t=None, return_Nd_feature=False):
|
514 |
+
"""
|
515 |
+
Apply the model to an input batch.
|
516 |
+
|
517 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
518 |
+
:param timesteps: a 1-D batch of timesteps.
|
519 |
+
:return: an [N x K] Tensor of outputs.
|
520 |
+
"""
|
521 |
+
if self.conf.use_time_condition:
|
522 |
+
emb = self.time_embed(timestep_embedding(t, self.model_channels))
|
523 |
+
else:
|
524 |
+
emb = None
|
525 |
+
|
526 |
+
results = []
|
527 |
+
h = x.type(self.dtype)
|
528 |
+
for module in self.input_blocks:
|
529 |
+
h = module(h, emb=emb)
|
530 |
+
if self.conf.pool.startswith("spatial"):
|
531 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3) if self.conf.dims == 2 else (2, 3, 4)))
|
532 |
+
h = self.middle_block(h, emb=emb)
|
533 |
+
if self.conf.pool.startswith("spatial"):
|
534 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3) if self.conf.dims == 2 else (2, 3, 4)))
|
535 |
+
h = th.cat(results, axis=-1)
|
536 |
+
else:
|
537 |
+
h = h.type(x.dtype)
|
538 |
+
|
539 |
+
h_Nd = h
|
540 |
+
h = self.out(h)
|
541 |
+
|
542 |
+
if return_Nd_feature:
|
543 |
+
return h, h_Nd
|
544 |
+
else:
|
545 |
+
return h
|
546 |
+
|
547 |
+
def forward_flatten(self, x):
|
548 |
+
"""
|
549 |
+
transform the last Nd feature into a flatten vector
|
550 |
+
"""
|
551 |
+
h = self.out(x)
|
552 |
+
return h
|
553 |
+
|
554 |
+
|
555 |
+
class SuperResModel(BeatGANsUNetModel):
|
556 |
+
"""
|
557 |
+
A UNetModel that performs super-resolution.
|
558 |
+
|
559 |
+
Expects an extra kwarg `low_res` to condition on a low-resolution image.
|
560 |
+
"""
|
561 |
+
def __init__(self, image_size, in_channels, *args, **kwargs):
|
562 |
+
super().__init__(image_size, in_channels * 2, *args, **kwargs)
|
563 |
+
|
564 |
+
def forward(self, x, timesteps, low_res=None, **kwargs):
|
565 |
+
_, _, new_height, new_width = x.shape
|
566 |
+
upsampled = F.interpolate(low_res, (new_height, new_width),
|
567 |
+
mode="bilinear")
|
568 |
+
x = th.cat([x, upsampled], dim=1)
|
569 |
+
return super().forward(x, timesteps, **kwargs)
|
DiffAE_model_unet_autoenc.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import Tensor
|
5 |
+
from torch.nn.functional import silu
|
6 |
+
|
7 |
+
from .DiffAE_model_latentnet import *
|
8 |
+
from .DiffAE_model_unet import *
|
9 |
+
from .DiffAE_support_choices import *
|
10 |
+
|
11 |
+
|
12 |
+
@dataclass
|
13 |
+
class BeatGANsAutoencConfig(BeatGANsUNetConfig):
|
14 |
+
# number of style channels
|
15 |
+
enc_out_channels: int = 512
|
16 |
+
enc_attn_resolutions: Tuple[int] = None
|
17 |
+
enc_pool: str = 'depthconv'
|
18 |
+
enc_num_res_block: int = 2
|
19 |
+
enc_channel_mult: Tuple[int] = None
|
20 |
+
enc_grad_checkpoint: bool = False
|
21 |
+
latent_net_conf: MLPSkipNetConfig = None
|
22 |
+
|
23 |
+
def make_model(self):
|
24 |
+
return BeatGANsAutoencModel(self)
|
25 |
+
|
26 |
+
|
27 |
+
class BeatGANsAutoencModel(BeatGANsUNetModel):
|
28 |
+
def __init__(self, conf: BeatGANsAutoencConfig):
|
29 |
+
super().__init__(conf)
|
30 |
+
self.conf = conf
|
31 |
+
|
32 |
+
# having only time, cond
|
33 |
+
self.time_embed = TimeStyleSeperateEmbed(
|
34 |
+
time_channels=conf.model_channels,
|
35 |
+
time_out_channels=conf.embed_channels,
|
36 |
+
)
|
37 |
+
|
38 |
+
self.encoder = BeatGANsEncoderConfig(
|
39 |
+
image_size=conf.image_size,
|
40 |
+
in_channels=conf.in_channels,
|
41 |
+
model_channels=conf.model_channels,
|
42 |
+
out_hid_channels=conf.enc_out_channels,
|
43 |
+
out_channels=conf.enc_out_channels,
|
44 |
+
num_res_blocks=conf.enc_num_res_block,
|
45 |
+
attention_resolutions=(conf.enc_attn_resolutions
|
46 |
+
or conf.attention_resolutions),
|
47 |
+
dropout=conf.dropout,
|
48 |
+
channel_mult=conf.enc_channel_mult or conf.channel_mult,
|
49 |
+
use_time_condition=False,
|
50 |
+
conv_resample=conf.conv_resample,
|
51 |
+
group_norm_limit=conf.group_norm_limit,
|
52 |
+
dims=conf.dims,
|
53 |
+
use_checkpoint=conf.use_checkpoint or conf.enc_grad_checkpoint,
|
54 |
+
num_heads=conf.num_heads,
|
55 |
+
num_head_channels=conf.num_head_channels,
|
56 |
+
resblock_updown=conf.resblock_updown,
|
57 |
+
use_new_attention_order=conf.use_new_attention_order,
|
58 |
+
pool=conf.enc_pool,
|
59 |
+
).make_model()
|
60 |
+
|
61 |
+
if conf.latent_net_conf is not None:
|
62 |
+
self.latent_net = conf.latent_net_conf.make_model()
|
63 |
+
|
64 |
+
def reparameterize(self, mu: Tensor, logvar: Tensor) -> Tensor:
|
65 |
+
"""
|
66 |
+
Reparameterization trick to sample from N(mu, var) from
|
67 |
+
N(0,1).
|
68 |
+
:param mu: (Tensor) Mean of the latent Gaussian [B x D]
|
69 |
+
:param logvar: (Tensor) Standard deviation of the latent Gaussian [B x D]
|
70 |
+
:return: (Tensor) [B x D]
|
71 |
+
"""
|
72 |
+
assert self.conf.is_stochastic
|
73 |
+
std = torch.exp(0.5 * logvar)
|
74 |
+
eps = torch.randn_like(std)
|
75 |
+
return eps * std + mu
|
76 |
+
|
77 |
+
def sample_z(self, n: int, device):
|
78 |
+
assert self.conf.is_stochastic
|
79 |
+
return torch.randn(n, self.conf.enc_out_channels, device=device)
|
80 |
+
|
81 |
+
def noise_to_cond(self, noise: Tensor):
|
82 |
+
raise NotImplementedError()
|
83 |
+
assert self.conf.noise_net_conf is not None
|
84 |
+
return self.noise_net.forward(noise)
|
85 |
+
|
86 |
+
def encode(self, x):
|
87 |
+
cond = self.encoder.forward(x)
|
88 |
+
return {'cond': cond}
|
89 |
+
|
90 |
+
@property
|
91 |
+
def stylespace_sizes(self):
|
92 |
+
modules = list(self.input_blocks.modules()) + list(
|
93 |
+
self.middle_block.modules()) + list(self.output_blocks.modules())
|
94 |
+
sizes = []
|
95 |
+
for module in modules:
|
96 |
+
if isinstance(module, ResBlock):
|
97 |
+
linear = module.cond_emb_layers[-1]
|
98 |
+
sizes.append(linear.weight.shape[0])
|
99 |
+
return sizes
|
100 |
+
|
101 |
+
def encode_stylespace(self, x, return_vector: bool = True):
|
102 |
+
"""
|
103 |
+
encode to style space
|
104 |
+
"""
|
105 |
+
modules = list(self.input_blocks.modules()) + list(
|
106 |
+
self.middle_block.modules()) + list(self.output_blocks.modules())
|
107 |
+
# (n, c)
|
108 |
+
cond = self.encoder.forward(x)
|
109 |
+
S = []
|
110 |
+
for module in modules:
|
111 |
+
if isinstance(module, ResBlock):
|
112 |
+
# (n, c')
|
113 |
+
s = module.cond_emb_layers.forward(cond)
|
114 |
+
S.append(s)
|
115 |
+
|
116 |
+
if return_vector:
|
117 |
+
# (n, sum_c)
|
118 |
+
return torch.cat(S, dim=1)
|
119 |
+
else:
|
120 |
+
return S
|
121 |
+
|
122 |
+
def forward(self,
|
123 |
+
x,
|
124 |
+
t,
|
125 |
+
y=None,
|
126 |
+
x_start=None,
|
127 |
+
cond=None,
|
128 |
+
style=None,
|
129 |
+
noise=None,
|
130 |
+
t_cond=None,
|
131 |
+
**kwargs):
|
132 |
+
"""
|
133 |
+
Apply the model to an input batch.
|
134 |
+
|
135 |
+
Args:
|
136 |
+
x_start: the original image to encode
|
137 |
+
cond: output of the encoder
|
138 |
+
noise: random noise (to predict the cond)
|
139 |
+
"""
|
140 |
+
|
141 |
+
if t_cond is None:
|
142 |
+
t_cond = t
|
143 |
+
|
144 |
+
if noise is not None:
|
145 |
+
# if the noise is given, we predict the cond from noise
|
146 |
+
cond = self.noise_to_cond(noise)
|
147 |
+
|
148 |
+
if cond is None:
|
149 |
+
if x is not None:
|
150 |
+
assert len(x) == len(x_start), f'{len(x)} != {len(x_start)}'
|
151 |
+
|
152 |
+
tmp = self.encode(x_start)
|
153 |
+
cond = tmp['cond']
|
154 |
+
|
155 |
+
if t is not None:
|
156 |
+
_t_emb = timestep_embedding(t, self.conf.model_channels)
|
157 |
+
_t_cond_emb = timestep_embedding(t_cond, self.conf.model_channels)
|
158 |
+
else:
|
159 |
+
# this happens when training only autoenc
|
160 |
+
_t_emb = None
|
161 |
+
_t_cond_emb = None
|
162 |
+
|
163 |
+
if self.conf.resnet_two_cond:
|
164 |
+
res = self.time_embed.forward(
|
165 |
+
time_emb=_t_emb,
|
166 |
+
cond=cond,
|
167 |
+
time_cond_emb=_t_cond_emb,
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
raise NotImplementedError()
|
171 |
+
|
172 |
+
if self.conf.resnet_two_cond:
|
173 |
+
# two cond: first = time emb, second = cond_emb
|
174 |
+
emb = res.time_emb
|
175 |
+
cond_emb = res.emb
|
176 |
+
else:
|
177 |
+
# one cond = combined of both time and cond
|
178 |
+
emb = res.emb
|
179 |
+
cond_emb = None
|
180 |
+
|
181 |
+
# override the style if given
|
182 |
+
style = style or res.style
|
183 |
+
|
184 |
+
assert (y is not None) == (
|
185 |
+
self.conf.num_classes is not None
|
186 |
+
), "must specify y if and only if the model is class-conditional"
|
187 |
+
|
188 |
+
if self.conf.num_classes is not None:
|
189 |
+
raise NotImplementedError()
|
190 |
+
# assert y.shape == (x.shape[0], )
|
191 |
+
# emb = emb + self.label_emb(y)
|
192 |
+
|
193 |
+
# where in the model to supply time conditions
|
194 |
+
enc_time_emb = emb
|
195 |
+
mid_time_emb = emb
|
196 |
+
dec_time_emb = emb
|
197 |
+
# where in the model to supply style conditions
|
198 |
+
enc_cond_emb = cond_emb
|
199 |
+
mid_cond_emb = cond_emb
|
200 |
+
dec_cond_emb = cond_emb
|
201 |
+
|
202 |
+
# hs = []
|
203 |
+
hs = [[] for _ in range(len(self.conf.channel_mult))]
|
204 |
+
|
205 |
+
if x is not None:
|
206 |
+
h = x.type(self.dtype)
|
207 |
+
|
208 |
+
# input blocks
|
209 |
+
k = 0
|
210 |
+
for i in range(len(self.input_num_blocks)):
|
211 |
+
for j in range(self.input_num_blocks[i]):
|
212 |
+
h = self.input_blocks[k](h,
|
213 |
+
emb=enc_time_emb,
|
214 |
+
cond=enc_cond_emb)
|
215 |
+
|
216 |
+
# print(i, j, h.shape)
|
217 |
+
hs[i].append(h)
|
218 |
+
k += 1
|
219 |
+
assert k == len(self.input_blocks)
|
220 |
+
|
221 |
+
# middle blocks
|
222 |
+
h = self.middle_block(h, emb=mid_time_emb, cond=mid_cond_emb)
|
223 |
+
else:
|
224 |
+
# no lateral connections
|
225 |
+
# happens when training only the autonecoder
|
226 |
+
h = None
|
227 |
+
hs = [[] for _ in range(len(self.conf.channel_mult))]
|
228 |
+
|
229 |
+
# output blocks
|
230 |
+
k = 0
|
231 |
+
for i in range(len(self.output_num_blocks)):
|
232 |
+
for j in range(self.output_num_blocks[i]):
|
233 |
+
# take the lateral connection from the same layer (in reserve)
|
234 |
+
# until there is no more, use None
|
235 |
+
try:
|
236 |
+
lateral = hs[-i - 1].pop()
|
237 |
+
# print(i, j, lateral.shape)
|
238 |
+
except IndexError:
|
239 |
+
lateral = None
|
240 |
+
# print(i, j, lateral)
|
241 |
+
|
242 |
+
h = self.output_blocks[k](h,
|
243 |
+
emb=dec_time_emb,
|
244 |
+
cond=dec_cond_emb,
|
245 |
+
lateral=lateral)
|
246 |
+
k += 1
|
247 |
+
|
248 |
+
pred = self.out(h)
|
249 |
+
return AutoencReturn(pred=pred, cond=cond)
|
250 |
+
|
251 |
+
|
252 |
+
class AutoencReturn(NamedTuple):
|
253 |
+
pred: Tensor
|
254 |
+
cond: Tensor = None
|
255 |
+
|
256 |
+
|
257 |
+
class EmbedReturn(NamedTuple):
|
258 |
+
# style and time
|
259 |
+
emb: Tensor = None
|
260 |
+
# time only
|
261 |
+
time_emb: Tensor = None
|
262 |
+
# style only (but could depend on time)
|
263 |
+
style: Tensor = None
|
264 |
+
|
265 |
+
|
266 |
+
class TimeStyleSeperateEmbed(nn.Module):
|
267 |
+
# embed only style
|
268 |
+
def __init__(self, time_channels, time_out_channels):
|
269 |
+
super().__init__()
|
270 |
+
self.time_embed = nn.Sequential(
|
271 |
+
linear(time_channels, time_out_channels),
|
272 |
+
nn.SiLU(),
|
273 |
+
linear(time_out_channels, time_out_channels),
|
274 |
+
)
|
275 |
+
self.style = nn.Identity()
|
276 |
+
|
277 |
+
def forward(self, time_emb=None, cond=None, **kwargs):
|
278 |
+
if time_emb is None:
|
279 |
+
# happens with autoenc training mode
|
280 |
+
time_emb = None
|
281 |
+
else:
|
282 |
+
time_emb = self.time_embed(time_emb)
|
283 |
+
style = self.style(cond)
|
284 |
+
return EmbedReturn(emb=style, time_emb=time_emb, style=style)
|
DiffAE_support.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .DiffAE_support_choices import *
|
2 |
+
from .DiffAE_support_config_base import *
|
3 |
+
from .DiffAE_support_config import *
|
4 |
+
from .DiffAE_support_dist_utils import *
|
5 |
+
from .DiffAE_support_metrics import *
|
6 |
+
from .DiffAE_support_renderer import *
|
7 |
+
from .DiffAE_support_templates_latent import *
|
8 |
+
from .DiffAE_support_templates import *
|
9 |
+
from .DiffAE_support_utils import *
|
DiffAE_support_choices.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class TrainMode(Enum):
|
6 |
+
# manipulate mode = training the classifier
|
7 |
+
manipulate = 'manipulate'
|
8 |
+
# default trainin mode!
|
9 |
+
diffusion = 'diffusion'
|
10 |
+
# default latent training mode!
|
11 |
+
# fitting the a DDPM to a given latent
|
12 |
+
latent_diffusion = 'latentdiffusion'
|
13 |
+
|
14 |
+
def is_manipulate(self):
|
15 |
+
return self in [
|
16 |
+
TrainMode.manipulate,
|
17 |
+
]
|
18 |
+
|
19 |
+
def is_diffusion(self):
|
20 |
+
return self in [
|
21 |
+
TrainMode.diffusion,
|
22 |
+
TrainMode.latent_diffusion,
|
23 |
+
]
|
24 |
+
|
25 |
+
def is_autoenc(self):
|
26 |
+
# the network possibly does autoencoding
|
27 |
+
return self in [
|
28 |
+
TrainMode.diffusion,
|
29 |
+
]
|
30 |
+
|
31 |
+
def is_latent_diffusion(self):
|
32 |
+
return self in [
|
33 |
+
TrainMode.latent_diffusion,
|
34 |
+
]
|
35 |
+
|
36 |
+
def use_latent_net(self):
|
37 |
+
return self.is_latent_diffusion()
|
38 |
+
|
39 |
+
def require_dataset_infer(self):
|
40 |
+
"""
|
41 |
+
whether training in this mode requires the latent variables to be available?
|
42 |
+
"""
|
43 |
+
# this will precalculate all the latents before hand
|
44 |
+
# and the dataset will be all the predicted latents
|
45 |
+
return self in [
|
46 |
+
TrainMode.latent_diffusion,
|
47 |
+
TrainMode.manipulate,
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
class ManipulateMode(Enum):
|
52 |
+
"""
|
53 |
+
how to train the classifier to manipulate
|
54 |
+
"""
|
55 |
+
# train on whole celeba attr dataset
|
56 |
+
celebahq_all = 'celebahq_all'
|
57 |
+
# celeba with D2C's crop
|
58 |
+
d2c_fewshot = 'd2cfewshot'
|
59 |
+
d2c_fewshot_allneg = 'd2cfewshotallneg'
|
60 |
+
|
61 |
+
def is_celeba_attr(self):
|
62 |
+
return self in [
|
63 |
+
ManipulateMode.d2c_fewshot,
|
64 |
+
ManipulateMode.d2c_fewshot_allneg,
|
65 |
+
ManipulateMode.celebahq_all,
|
66 |
+
]
|
67 |
+
|
68 |
+
def is_single_class(self):
|
69 |
+
return self in [
|
70 |
+
ManipulateMode.d2c_fewshot,
|
71 |
+
ManipulateMode.d2c_fewshot_allneg,
|
72 |
+
]
|
73 |
+
|
74 |
+
def is_fewshot(self):
|
75 |
+
return self in [
|
76 |
+
ManipulateMode.d2c_fewshot,
|
77 |
+
ManipulateMode.d2c_fewshot_allneg,
|
78 |
+
]
|
79 |
+
|
80 |
+
def is_fewshot_allneg(self):
|
81 |
+
return self in [
|
82 |
+
ManipulateMode.d2c_fewshot_allneg,
|
83 |
+
]
|
84 |
+
|
85 |
+
|
86 |
+
class ModelType(Enum):
|
87 |
+
"""
|
88 |
+
Kinds of the backbone models
|
89 |
+
"""
|
90 |
+
|
91 |
+
# unconditional ddpm
|
92 |
+
ddpm = 'ddpm'
|
93 |
+
# autoencoding ddpm cannot do unconditional generation
|
94 |
+
autoencoder = 'autoencoder'
|
95 |
+
|
96 |
+
def has_autoenc(self):
|
97 |
+
return self in [
|
98 |
+
ModelType.autoencoder,
|
99 |
+
]
|
100 |
+
|
101 |
+
def can_sample(self):
|
102 |
+
return self in [ModelType.ddpm]
|
103 |
+
|
104 |
+
|
105 |
+
class ModelName(Enum):
|
106 |
+
"""
|
107 |
+
List of all supported model classes
|
108 |
+
"""
|
109 |
+
|
110 |
+
beatgans_ddpm = 'beatgans_ddpm'
|
111 |
+
beatgans_autoenc = 'beatgans_autoenc'
|
112 |
+
|
113 |
+
|
114 |
+
class ModelMeanType(Enum):
|
115 |
+
"""
|
116 |
+
Which type of output the model predicts.
|
117 |
+
"""
|
118 |
+
|
119 |
+
eps = 'eps' # the model predicts epsilon
|
120 |
+
|
121 |
+
|
122 |
+
class ModelVarType(Enum):
|
123 |
+
"""
|
124 |
+
What is used as the model's output variance.
|
125 |
+
|
126 |
+
The LEARNED_RANGE option has been added to allow the model to predict
|
127 |
+
values between FIXED_SMALL and FIXED_LARGE, making its job easier.
|
128 |
+
"""
|
129 |
+
|
130 |
+
# posterior beta_t
|
131 |
+
fixed_small = 'fixed_small'
|
132 |
+
# beta_t
|
133 |
+
fixed_large = 'fixed_large'
|
134 |
+
|
135 |
+
|
136 |
+
class LossType(Enum):
|
137 |
+
mse = 'mse' # use raw MSE loss (and KL when learning variances)
|
138 |
+
l1 = 'l1'
|
139 |
+
|
140 |
+
|
141 |
+
class GenerativeType(Enum):
|
142 |
+
"""
|
143 |
+
How's a sample generated
|
144 |
+
"""
|
145 |
+
|
146 |
+
ddpm = 'ddpm'
|
147 |
+
ddim = 'ddim'
|
148 |
+
|
149 |
+
|
150 |
+
class OptimizerType(Enum):
|
151 |
+
adam = 'adam'
|
152 |
+
adamw = 'adamw'
|
153 |
+
|
154 |
+
|
155 |
+
class Activation(Enum):
|
156 |
+
none = 'none'
|
157 |
+
relu = 'relu'
|
158 |
+
lrelu = 'lrelu'
|
159 |
+
silu = 'silu'
|
160 |
+
tanh = 'tanh'
|
161 |
+
|
162 |
+
def get_act(self):
|
163 |
+
if self == Activation.none:
|
164 |
+
return nn.Identity()
|
165 |
+
elif self == Activation.relu:
|
166 |
+
return nn.ReLU()
|
167 |
+
elif self == Activation.lrelu:
|
168 |
+
return nn.LeakyReLU(negative_slope=0.2)
|
169 |
+
elif self == Activation.silu:
|
170 |
+
return nn.SiLU()
|
171 |
+
elif self == Activation.tanh:
|
172 |
+
return nn.Tanh()
|
173 |
+
else:
|
174 |
+
raise NotImplementedError()
|
175 |
+
|
176 |
+
|
177 |
+
class ManipulateLossType(Enum):
|
178 |
+
bce = 'bce'
|
179 |
+
mse = 'mse'
|
DiffAE_support_config.py
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .DiffAE_model_blocks import ScaleAt
|
2 |
+
from .DiffAE_model import *
|
3 |
+
from .DiffAE_diffusion_resample import UniformSampler
|
4 |
+
from .DiffAE_diffusion_diffusion import space_timesteps
|
5 |
+
from typing import Tuple
|
6 |
+
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
|
9 |
+
from .DiffAE_support_config_base import BaseConfig
|
10 |
+
from .DiffAE_support_choices import GenerativeType, LossType, ModelMeanType, ModelVarType
|
11 |
+
from .DiffAE_diffusion_base import get_named_beta_schedule
|
12 |
+
from .DiffAE_support_choices import *
|
13 |
+
from .DiffAE_diffusion_diffusion import SpacedDiffusionBeatGansConfig
|
14 |
+
from multiprocessing import get_context
|
15 |
+
import os
|
16 |
+
from torch.utils.data.distributed import DistributedSampler
|
17 |
+
|
18 |
+
from dataclasses import dataclass
|
19 |
+
|
20 |
+
data_paths = {
|
21 |
+
'ffhqlmdb256':
|
22 |
+
os.path.expanduser('datasets/ffhq256.lmdb'),
|
23 |
+
# used for training a classifier
|
24 |
+
'celeba':
|
25 |
+
os.path.expanduser('datasets/celeba'),
|
26 |
+
# used for training DPM models
|
27 |
+
'celebalmdb':
|
28 |
+
os.path.expanduser('datasets/celeba.lmdb'),
|
29 |
+
'celebahq':
|
30 |
+
os.path.expanduser('datasets/celebahq256.lmdb'),
|
31 |
+
'horse256':
|
32 |
+
os.path.expanduser('datasets/horse256.lmdb'),
|
33 |
+
'bedroom256':
|
34 |
+
os.path.expanduser('datasets/bedroom256.lmdb'),
|
35 |
+
'celeba_anno':
|
36 |
+
os.path.expanduser('datasets/celeba_anno/list_attr_celeba.txt'),
|
37 |
+
'celebahq_anno':
|
38 |
+
os.path.expanduser(
|
39 |
+
'datasets/celeba_anno/CelebAMask-HQ-attribute-anno.txt'),
|
40 |
+
'celeba_relight':
|
41 |
+
os.path.expanduser('datasets/celeba_hq_light/celeba_light.txt'),
|
42 |
+
}
|
43 |
+
|
44 |
+
|
45 |
+
@dataclass
|
46 |
+
class PretrainConfig(BaseConfig):
|
47 |
+
name: str
|
48 |
+
path: str
|
49 |
+
|
50 |
+
|
51 |
+
@dataclass
|
52 |
+
class TrainConfig(BaseConfig):
|
53 |
+
#new params added (Soumick)
|
54 |
+
n_dims: int = 2
|
55 |
+
in_channels: int = 3
|
56 |
+
out_channels: int = 3
|
57 |
+
group_norm_limit: int = 32
|
58 |
+
|
59 |
+
# random seed
|
60 |
+
seed: int = 0
|
61 |
+
train_mode: TrainMode = TrainMode.diffusion
|
62 |
+
train_cond0_prob: float = 0
|
63 |
+
train_pred_xstart_detach: bool = True
|
64 |
+
train_interpolate_prob: float = 0
|
65 |
+
train_interpolate_img: bool = False
|
66 |
+
manipulate_mode: ManipulateMode = ManipulateMode.celebahq_all
|
67 |
+
manipulate_cls: str = None
|
68 |
+
manipulate_shots: int = None
|
69 |
+
manipulate_loss: ManipulateLossType = ManipulateLossType.bce
|
70 |
+
manipulate_znormalize: bool = False
|
71 |
+
manipulate_seed: int = 0
|
72 |
+
accum_batches: int = 1
|
73 |
+
autoenc_mid_attn: bool = True
|
74 |
+
batch_size: int = 16
|
75 |
+
batch_size_eval: int = None
|
76 |
+
beatgans_gen_type: GenerativeType = GenerativeType.ddim
|
77 |
+
beatgans_loss_type: LossType = LossType.mse
|
78 |
+
beatgans_model_mean_type: ModelMeanType = ModelMeanType.eps
|
79 |
+
beatgans_model_var_type: ModelVarType = ModelVarType.fixed_large
|
80 |
+
beatgans_rescale_timesteps: bool = False
|
81 |
+
latent_infer_path: str = None
|
82 |
+
latent_znormalize: bool = False
|
83 |
+
latent_gen_type: GenerativeType = GenerativeType.ddim
|
84 |
+
latent_loss_type: LossType = LossType.mse
|
85 |
+
latent_model_mean_type: ModelMeanType = ModelMeanType.eps
|
86 |
+
latent_model_var_type: ModelVarType = ModelVarType.fixed_large
|
87 |
+
latent_rescale_timesteps: bool = False
|
88 |
+
latent_T_eval: int = 1_000
|
89 |
+
latent_clip_sample: bool = False
|
90 |
+
latent_beta_scheduler: str = 'linear'
|
91 |
+
beta_scheduler: str = 'linear'
|
92 |
+
data_name: str = ''
|
93 |
+
data_val_name: str = None
|
94 |
+
diffusion_type: str = None
|
95 |
+
dropout: float = 0.1
|
96 |
+
ema_decay: float = 0.9999
|
97 |
+
eval_num_images: int = 5_000
|
98 |
+
eval_every_samples: int = 200_000
|
99 |
+
eval_ema_every_samples: int = 200_000
|
100 |
+
fid_use_torch: bool = True
|
101 |
+
fp16: bool = False
|
102 |
+
grad_clip: float = 1
|
103 |
+
img_size: int = 64
|
104 |
+
lr: float = 0.0001
|
105 |
+
optimizer: OptimizerType = OptimizerType.adam
|
106 |
+
weight_decay: float = 0
|
107 |
+
model_conf: ModelConfig = None
|
108 |
+
model_name: ModelName = None
|
109 |
+
model_type: ModelType = None
|
110 |
+
net_attn: Tuple[int] = None
|
111 |
+
net_beatgans_attn_head: int = 1
|
112 |
+
# not necessarily the same as the the number of style channels
|
113 |
+
net_beatgans_embed_channels: int = 512
|
114 |
+
net_resblock_updown: bool = True
|
115 |
+
net_enc_use_time: bool = False
|
116 |
+
net_enc_pool: str = 'adaptivenonzero'
|
117 |
+
net_beatgans_gradient_checkpoint: bool = False
|
118 |
+
net_beatgans_resnet_two_cond: bool = False
|
119 |
+
net_beatgans_resnet_use_zero_module: bool = True
|
120 |
+
net_beatgans_resnet_scale_at: ScaleAt = ScaleAt.after_norm
|
121 |
+
net_beatgans_resnet_cond_channels: int = None
|
122 |
+
net_ch_mult: Tuple[int] = None
|
123 |
+
net_ch: int = 64
|
124 |
+
net_enc_attn: Tuple[int] = None
|
125 |
+
net_enc_k: int = None
|
126 |
+
# number of resblocks for the encoder (half-unet)
|
127 |
+
net_enc_num_res_blocks: int = 2
|
128 |
+
net_enc_channel_mult: Tuple[int] = None
|
129 |
+
net_enc_grad_checkpoint: bool = False
|
130 |
+
net_autoenc_stochastic: bool = False
|
131 |
+
net_latent_activation: Activation = Activation.silu
|
132 |
+
net_latent_channel_mult: Tuple[int] = (1, 2, 4)
|
133 |
+
net_latent_condition_bias: float = 0
|
134 |
+
net_latent_dropout: float = 0
|
135 |
+
net_latent_layers: int = None
|
136 |
+
net_latent_net_last_act: Activation = Activation.none
|
137 |
+
net_latent_net_type: LatentNetType = LatentNetType.none
|
138 |
+
net_latent_num_hid_channels: int = 1024
|
139 |
+
net_latent_num_time_layers: int = 2
|
140 |
+
net_latent_skip_layers: Tuple[int] = None
|
141 |
+
net_latent_time_emb_channels: int = 64
|
142 |
+
net_latent_use_norm: bool = False
|
143 |
+
net_latent_time_last_act: bool = False
|
144 |
+
net_num_res_blocks: int = 2
|
145 |
+
# number of resblocks for the UNET
|
146 |
+
net_num_input_res_blocks: int = None
|
147 |
+
net_enc_num_cls: int = None
|
148 |
+
num_workers: int = 4
|
149 |
+
parallel: bool = False
|
150 |
+
postfix: str = ''
|
151 |
+
sample_size: int = 64
|
152 |
+
sample_every_samples: int = 20_000
|
153 |
+
save_every_samples: int = 100_000
|
154 |
+
style_ch: int = 512
|
155 |
+
T_eval: int = 1_000
|
156 |
+
T_sampler: str = 'uniform'
|
157 |
+
T: int = 1_000
|
158 |
+
total_samples: int = 10_000_000
|
159 |
+
warmup: int = 0
|
160 |
+
pretrain: PretrainConfig = None
|
161 |
+
continue_from: PretrainConfig = None
|
162 |
+
eval_programs: Tuple[str] = None
|
163 |
+
# if present load the checkpoint from this path instead
|
164 |
+
eval_path: str = None
|
165 |
+
base_dir: str = 'checkpoints'
|
166 |
+
use_cache_dataset: bool = False
|
167 |
+
data_cache_dir: str = os.path.expanduser('~/cache')
|
168 |
+
work_cache_dir: str = os.path.expanduser('~/mycache')
|
169 |
+
# to be overridden
|
170 |
+
name: str = ''
|
171 |
+
|
172 |
+
def refresh_values(self):
|
173 |
+
self.img_size = max(self.input_shape)
|
174 |
+
self.n_dims = 3 if self.is3D else 2
|
175 |
+
self.group_norm_limit = min(32, self.net_ch)
|
176 |
+
|
177 |
+
def __post_init__(self):
|
178 |
+
self.batch_size_eval = self.batch_size_eval or self.batch_size
|
179 |
+
self.data_val_name = self.data_val_name or self.data_name
|
180 |
+
|
181 |
+
def scale_up_gpus(self, num_gpus, num_nodes=1):
|
182 |
+
self.eval_ema_every_samples *= num_gpus * num_nodes
|
183 |
+
self.eval_every_samples *= num_gpus * num_nodes
|
184 |
+
self.sample_every_samples *= num_gpus * num_nodes
|
185 |
+
self.batch_size *= num_gpus * num_nodes
|
186 |
+
self.batch_size_eval *= num_gpus * num_nodes
|
187 |
+
return self
|
188 |
+
|
189 |
+
@property
|
190 |
+
def batch_size_effective(self):
|
191 |
+
return self.batch_size * self.accum_batches
|
192 |
+
|
193 |
+
@property
|
194 |
+
def fid_cache(self):
|
195 |
+
# we try to use the local dirs to reduce the load over network drives
|
196 |
+
# hopefully, this would reduce the disconnection problems with sshfs
|
197 |
+
return f'{self.work_cache_dir}/eval_images/{self.data_name}_size{self.img_size}_{self.eval_num_images}'
|
198 |
+
|
199 |
+
@property
|
200 |
+
def data_path(self):
|
201 |
+
# may use the cache dir
|
202 |
+
path = data_paths[self.data_name]
|
203 |
+
if self.use_cache_dataset and path is not None:
|
204 |
+
path = use_cached_dataset_path(
|
205 |
+
path, f'{self.data_cache_dir}/{self.data_name}')
|
206 |
+
return path
|
207 |
+
|
208 |
+
@property
|
209 |
+
def logdir(self):
|
210 |
+
return f'{self.base_dir}/{self.name}'
|
211 |
+
|
212 |
+
@property
|
213 |
+
def generate_dir(self):
|
214 |
+
# we try to use the local dirs to reduce the load over network drives
|
215 |
+
# hopefully, this would reduce the disconnection problems with sshfs
|
216 |
+
return f'{self.work_cache_dir}/gen_images/{self.name}'
|
217 |
+
|
218 |
+
def _make_diffusion_conf(self, T=None):
|
219 |
+
if self.diffusion_type == 'beatgans':
|
220 |
+
# can use T < self.T for evaluation
|
221 |
+
# follows the guided-diffusion repo conventions
|
222 |
+
# t's are evenly spaced
|
223 |
+
if self.beatgans_gen_type == GenerativeType.ddpm:
|
224 |
+
section_counts = [T]
|
225 |
+
elif self.beatgans_gen_type == GenerativeType.ddim:
|
226 |
+
section_counts = f'ddim{T}'
|
227 |
+
else:
|
228 |
+
raise NotImplementedError()
|
229 |
+
|
230 |
+
return SpacedDiffusionBeatGansConfig(
|
231 |
+
gen_type=self.beatgans_gen_type,
|
232 |
+
model_type=self.model_type,
|
233 |
+
betas=get_named_beta_schedule(self.beta_scheduler, self.T),
|
234 |
+
model_mean_type=self.beatgans_model_mean_type,
|
235 |
+
model_var_type=self.beatgans_model_var_type,
|
236 |
+
loss_type=self.beatgans_loss_type,
|
237 |
+
rescale_timesteps=self.beatgans_rescale_timesteps,
|
238 |
+
use_timesteps=space_timesteps(num_timesteps=self.T,
|
239 |
+
section_counts=section_counts),
|
240 |
+
fp16=self.fp16,
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
raise NotImplementedError()
|
244 |
+
|
245 |
+
def _make_latent_diffusion_conf(self, T=None):
|
246 |
+
# can use T < self.T for evaluation
|
247 |
+
# follows the guided-diffusion repo conventions
|
248 |
+
# t's are evenly spaced
|
249 |
+
if self.latent_gen_type == GenerativeType.ddpm:
|
250 |
+
section_counts = [T]
|
251 |
+
elif self.latent_gen_type == GenerativeType.ddim:
|
252 |
+
section_counts = f'ddim{T}'
|
253 |
+
else:
|
254 |
+
raise NotImplementedError()
|
255 |
+
|
256 |
+
return SpacedDiffusionBeatGansConfig(
|
257 |
+
train_pred_xstart_detach=self.train_pred_xstart_detach,
|
258 |
+
gen_type=self.latent_gen_type,
|
259 |
+
# latent's model is always ddpm
|
260 |
+
model_type=ModelType.ddpm,
|
261 |
+
# latent shares the beta scheduler and full T
|
262 |
+
betas=get_named_beta_schedule(self.latent_beta_scheduler, self.T),
|
263 |
+
model_mean_type=self.latent_model_mean_type,
|
264 |
+
model_var_type=self.latent_model_var_type,
|
265 |
+
loss_type=self.latent_loss_type,
|
266 |
+
rescale_timesteps=self.latent_rescale_timesteps,
|
267 |
+
use_timesteps=space_timesteps(num_timesteps=self.T,
|
268 |
+
section_counts=section_counts),
|
269 |
+
fp16=self.fp16,
|
270 |
+
)
|
271 |
+
|
272 |
+
@property
|
273 |
+
def model_out_channels(self):
|
274 |
+
return self.out_channels
|
275 |
+
|
276 |
+
def make_T_sampler(self):
|
277 |
+
if self.T_sampler == 'uniform':
|
278 |
+
return UniformSampler(self.T)
|
279 |
+
else:
|
280 |
+
raise NotImplementedError()
|
281 |
+
|
282 |
+
def make_diffusion_conf(self):
|
283 |
+
return self._make_diffusion_conf(self.T)
|
284 |
+
|
285 |
+
def make_eval_diffusion_conf(self):
|
286 |
+
return self._make_diffusion_conf(T=self.T_eval)
|
287 |
+
|
288 |
+
def make_latent_diffusion_conf(self):
|
289 |
+
return self._make_latent_diffusion_conf(T=self.T)
|
290 |
+
|
291 |
+
def make_latent_eval_diffusion_conf(self):
|
292 |
+
# latent can have different eval T
|
293 |
+
return self._make_latent_diffusion_conf(T=self.latent_T_eval)
|
294 |
+
|
295 |
+
def make_dataset(self, path=None, **kwargs):
|
296 |
+
if self.data_name == 'ffhqlmdb256':
|
297 |
+
return FFHQlmdb(path=path or self.data_path,
|
298 |
+
image_size=self.img_size,
|
299 |
+
**kwargs)
|
300 |
+
elif self.data_name == 'horse256':
|
301 |
+
return Horse_lmdb(path=path or self.data_path,
|
302 |
+
image_size=self.img_size,
|
303 |
+
**kwargs)
|
304 |
+
elif self.data_name == 'bedroom256':
|
305 |
+
return Horse_lmdb(path=path or self.data_path,
|
306 |
+
image_size=self.img_size,
|
307 |
+
**kwargs)
|
308 |
+
elif self.data_name == 'celebalmdb':
|
309 |
+
# always use d2c crop
|
310 |
+
return CelebAlmdb(path=path or self.data_path,
|
311 |
+
image_size=self.img_size,
|
312 |
+
original_resolution=None,
|
313 |
+
crop_d2c=True,
|
314 |
+
**kwargs)
|
315 |
+
else:
|
316 |
+
raise NotImplementedError()
|
317 |
+
|
318 |
+
def make_loader(self,
|
319 |
+
dataset,
|
320 |
+
shuffle: bool,
|
321 |
+
num_worker: bool = None,
|
322 |
+
drop_last: bool = True,
|
323 |
+
batch_size: int = None,
|
324 |
+
parallel: bool = False):
|
325 |
+
if parallel and distributed.is_initialized():
|
326 |
+
# drop last to make sure that there is no added special indexes
|
327 |
+
sampler = DistributedSampler(dataset,
|
328 |
+
shuffle=shuffle,
|
329 |
+
drop_last=True)
|
330 |
+
else:
|
331 |
+
sampler = None
|
332 |
+
return DataLoader(
|
333 |
+
dataset,
|
334 |
+
batch_size=batch_size or self.batch_size,
|
335 |
+
sampler=sampler,
|
336 |
+
# with sampler, use the sample instead of this option
|
337 |
+
shuffle=False if sampler else shuffle,
|
338 |
+
num_workers=num_worker or self.num_workers,
|
339 |
+
pin_memory=True,
|
340 |
+
drop_last=drop_last,
|
341 |
+
multiprocessing_context=get_context('fork'),
|
342 |
+
)
|
343 |
+
|
344 |
+
def make_model_conf(self):
|
345 |
+
if self.model_name == ModelName.beatgans_ddpm:
|
346 |
+
self.model_type = ModelType.ddpm
|
347 |
+
self.model_conf = BeatGANsUNetConfig(
|
348 |
+
attention_resolutions=self.net_attn,
|
349 |
+
channel_mult=self.net_ch_mult,
|
350 |
+
conv_resample=True,
|
351 |
+
group_norm_limit=self.group_norm_limit,
|
352 |
+
dims=self.n_dims,
|
353 |
+
dropout=self.dropout,
|
354 |
+
embed_channels=self.net_beatgans_embed_channels,
|
355 |
+
image_size=self.img_size,
|
356 |
+
in_channels=self.in_channels,
|
357 |
+
model_channels=self.net_ch,
|
358 |
+
num_classes=None,
|
359 |
+
num_head_channels=-1,
|
360 |
+
num_heads_upsample=-1,
|
361 |
+
num_heads=self.net_beatgans_attn_head,
|
362 |
+
num_res_blocks=self.net_num_res_blocks,
|
363 |
+
num_input_res_blocks=self.net_num_input_res_blocks,
|
364 |
+
out_channels=self.model_out_channels,
|
365 |
+
resblock_updown=self.net_resblock_updown,
|
366 |
+
use_checkpoint=self.net_beatgans_gradient_checkpoint,
|
367 |
+
use_new_attention_order=False,
|
368 |
+
resnet_two_cond=self.net_beatgans_resnet_two_cond,
|
369 |
+
resnet_use_zero_module=self.
|
370 |
+
net_beatgans_resnet_use_zero_module,
|
371 |
+
)
|
372 |
+
elif self.model_name in [
|
373 |
+
ModelName.beatgans_autoenc,
|
374 |
+
]:
|
375 |
+
cls = BeatGANsAutoencConfig
|
376 |
+
# supports both autoenc and vaeddpm
|
377 |
+
if self.model_name == ModelName.beatgans_autoenc:
|
378 |
+
self.model_type = ModelType.autoencoder
|
379 |
+
else:
|
380 |
+
raise NotImplementedError()
|
381 |
+
|
382 |
+
if self.net_latent_net_type == LatentNetType.none:
|
383 |
+
latent_net_conf = None
|
384 |
+
elif self.net_latent_net_type == LatentNetType.skip:
|
385 |
+
latent_net_conf = MLPSkipNetConfig(
|
386 |
+
num_channels=self.style_ch,
|
387 |
+
skip_layers=self.net_latent_skip_layers,
|
388 |
+
num_hid_channels=self.net_latent_num_hid_channels,
|
389 |
+
num_layers=self.net_latent_layers,
|
390 |
+
num_time_emb_channels=self.net_latent_time_emb_channels,
|
391 |
+
activation=self.net_latent_activation,
|
392 |
+
use_norm=self.net_latent_use_norm,
|
393 |
+
condition_bias=self.net_latent_condition_bias,
|
394 |
+
dropout=self.net_latent_dropout,
|
395 |
+
last_act=self.net_latent_net_last_act,
|
396 |
+
num_time_layers=self.net_latent_num_time_layers,
|
397 |
+
time_last_act=self.net_latent_time_last_act,
|
398 |
+
)
|
399 |
+
else:
|
400 |
+
raise NotImplementedError()
|
401 |
+
|
402 |
+
self.model_conf = cls(
|
403 |
+
attention_resolutions=self.net_attn,
|
404 |
+
channel_mult=self.net_ch_mult,
|
405 |
+
conv_resample=True,
|
406 |
+
group_norm_limit=self.group_norm_limit,
|
407 |
+
dims=self.n_dims,
|
408 |
+
dropout=self.dropout,
|
409 |
+
embed_channels=self.net_beatgans_embed_channels,
|
410 |
+
enc_out_channels=self.style_ch,
|
411 |
+
enc_pool=self.net_enc_pool,
|
412 |
+
enc_num_res_block=self.net_enc_num_res_blocks,
|
413 |
+
enc_channel_mult=self.net_enc_channel_mult,
|
414 |
+
enc_grad_checkpoint=self.net_enc_grad_checkpoint,
|
415 |
+
enc_attn_resolutions=self.net_enc_attn,
|
416 |
+
image_size=self.img_size,
|
417 |
+
in_channels=self.in_channels,
|
418 |
+
model_channels=self.net_ch,
|
419 |
+
num_classes=None,
|
420 |
+
num_head_channels=-1,
|
421 |
+
num_heads_upsample=-1,
|
422 |
+
num_heads=self.net_beatgans_attn_head,
|
423 |
+
num_res_blocks=self.net_num_res_blocks,
|
424 |
+
num_input_res_blocks=self.net_num_input_res_blocks,
|
425 |
+
out_channels=self.model_out_channels,
|
426 |
+
resblock_updown=self.net_resblock_updown,
|
427 |
+
use_checkpoint=self.net_beatgans_gradient_checkpoint,
|
428 |
+
use_new_attention_order=False,
|
429 |
+
resnet_two_cond=self.net_beatgans_resnet_two_cond,
|
430 |
+
resnet_use_zero_module=self.
|
431 |
+
net_beatgans_resnet_use_zero_module,
|
432 |
+
latent_net_conf=latent_net_conf,
|
433 |
+
resnet_cond_channels=self.net_beatgans_resnet_cond_channels,
|
434 |
+
)
|
435 |
+
else:
|
436 |
+
raise NotImplementedError(self.model_name)
|
437 |
+
|
438 |
+
return self.model_conf
|
DiffAE_support_config_base.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from copy import deepcopy
|
4 |
+
from dataclasses import dataclass
|
5 |
+
|
6 |
+
|
7 |
+
@dataclass
|
8 |
+
class BaseConfig:
|
9 |
+
def clone(self):
|
10 |
+
return deepcopy(self)
|
11 |
+
|
12 |
+
def inherit(self, another):
|
13 |
+
"""inherit common keys from a given config"""
|
14 |
+
common_keys = set(self.__dict__.keys()) & set(another.__dict__.keys())
|
15 |
+
for k in common_keys:
|
16 |
+
setattr(self, k, getattr(another, k))
|
17 |
+
|
18 |
+
def propagate(self):
|
19 |
+
"""push down the configuration to all members"""
|
20 |
+
for k, v in self.__dict__.items():
|
21 |
+
if isinstance(v, BaseConfig):
|
22 |
+
v.inherit(self)
|
23 |
+
v.propagate()
|
24 |
+
|
25 |
+
def save(self, save_path):
|
26 |
+
"""save config to json file"""
|
27 |
+
dirname = os.path.dirname(save_path)
|
28 |
+
if not os.path.exists(dirname):
|
29 |
+
os.makedirs(dirname)
|
30 |
+
conf = self.as_dict_jsonable()
|
31 |
+
with open(save_path, 'w') as f:
|
32 |
+
json.dump(conf, f)
|
33 |
+
|
34 |
+
def load(self, load_path):
|
35 |
+
"""load json config"""
|
36 |
+
with open(load_path) as f:
|
37 |
+
conf = json.load(f)
|
38 |
+
self.from_dict(conf)
|
39 |
+
|
40 |
+
def from_dict(self, dict, strict=False):
|
41 |
+
for k, v in dict.items():
|
42 |
+
if not hasattr(self, k):
|
43 |
+
if strict:
|
44 |
+
raise ValueError(f"loading extra '{k}'")
|
45 |
+
else:
|
46 |
+
print(f"loading extra '{k}'")
|
47 |
+
continue
|
48 |
+
if isinstance(self.__dict__[k], BaseConfig):
|
49 |
+
self.__dict__[k].from_dict(v)
|
50 |
+
else:
|
51 |
+
self.__dict__[k] = v
|
52 |
+
|
53 |
+
def as_dict_jsonable(self):
|
54 |
+
conf = {}
|
55 |
+
for k, v in self.__dict__.items():
|
56 |
+
if isinstance(v, BaseConfig):
|
57 |
+
conf[k] = v.as_dict_jsonable()
|
58 |
+
else:
|
59 |
+
if jsonable(v):
|
60 |
+
conf[k] = v
|
61 |
+
else:
|
62 |
+
# ignore not jsonable
|
63 |
+
pass
|
64 |
+
return conf
|
65 |
+
|
66 |
+
|
67 |
+
def jsonable(x):
|
68 |
+
try:
|
69 |
+
json.dumps(x)
|
70 |
+
return True
|
71 |
+
except TypeError:
|
72 |
+
return False
|
DiffAE_support_dist_utils.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
from torch import distributed
|
3 |
+
|
4 |
+
|
5 |
+
def barrier():
|
6 |
+
if distributed.is_initialized():
|
7 |
+
distributed.barrier()
|
8 |
+
else:
|
9 |
+
pass
|
10 |
+
|
11 |
+
|
12 |
+
def broadcast(data, src):
|
13 |
+
if distributed.is_initialized():
|
14 |
+
distributed.broadcast(data, src)
|
15 |
+
else:
|
16 |
+
pass
|
17 |
+
|
18 |
+
|
19 |
+
def all_gather(data: List, src):
|
20 |
+
if distributed.is_initialized():
|
21 |
+
distributed.all_gather(data, src)
|
22 |
+
else:
|
23 |
+
data[0] = src
|
24 |
+
|
25 |
+
|
26 |
+
def get_rank():
|
27 |
+
if distributed.is_initialized():
|
28 |
+
return distributed.get_rank()
|
29 |
+
else:
|
30 |
+
return 0
|
31 |
+
|
32 |
+
|
33 |
+
def get_world_size():
|
34 |
+
if distributed.is_initialized():
|
35 |
+
return distributed.get_world_size()
|
36 |
+
else:
|
37 |
+
return 1
|
38 |
+
|
39 |
+
|
40 |
+
def chunk_size(size, rank, world_size):
|
41 |
+
extra = rank < size % world_size
|
42 |
+
return size // world_size + extra
|
DiffAE_support_metrics.py
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torchvision
|
6 |
+
from pytorch_fid import fid_score
|
7 |
+
from torch import distributed
|
8 |
+
from torch.utils.data import DataLoader
|
9 |
+
from torch.utils.data.distributed import DistributedSampler
|
10 |
+
from tqdm.autonotebook import tqdm, trange
|
11 |
+
|
12 |
+
from .DiffAE_support_renderer import *
|
13 |
+
from .DiffAE_support_config import *
|
14 |
+
from .DiffAE_diffusion_diffusion import SpacedDiffusionBeatGans as Sampler
|
15 |
+
import lpips
|
16 |
+
from ssim import compute_ssim as ssim
|
17 |
+
|
18 |
+
|
19 |
+
def make_subset_loader(conf: TrainConfig,
|
20 |
+
dataset,
|
21 |
+
batch_size: int,
|
22 |
+
shuffle: bool,
|
23 |
+
parallel: bool,
|
24 |
+
drop_last=True):
|
25 |
+
dataset = SubsetDataset(dataset, size=conf.eval_num_images)
|
26 |
+
if parallel and distributed.is_initialized():
|
27 |
+
sampler = DistributedSampler(dataset, shuffle=shuffle)
|
28 |
+
else:
|
29 |
+
sampler = None
|
30 |
+
return DataLoader(
|
31 |
+
dataset,
|
32 |
+
batch_size=batch_size,
|
33 |
+
sampler=sampler,
|
34 |
+
# with sampler, use the sample instead of this option
|
35 |
+
shuffle=False if sampler else shuffle,
|
36 |
+
num_workers=conf.num_workers,
|
37 |
+
pin_memory=True,
|
38 |
+
drop_last=drop_last,
|
39 |
+
multiprocessing_context=get_context('fork'),
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
def evaluate_lpips(
|
44 |
+
sampler: Sampler,
|
45 |
+
model: Model,
|
46 |
+
conf: TrainConfig,
|
47 |
+
device,
|
48 |
+
val_data,
|
49 |
+
latent_sampler: Sampler = None,
|
50 |
+
use_inverted_noise: bool = False,
|
51 |
+
):
|
52 |
+
"""
|
53 |
+
compare the generated images from autoencoder on validation dataset
|
54 |
+
|
55 |
+
Args:
|
56 |
+
use_inversed_noise: the noise is also inverted from DDIM
|
57 |
+
"""
|
58 |
+
lpips_fn = lpips.LPIPS(net='alex').to(device)
|
59 |
+
val_loader = make_subset_loader(conf,
|
60 |
+
dataset=val_data,
|
61 |
+
batch_size=conf.batch_size_eval,
|
62 |
+
shuffle=False,
|
63 |
+
parallel=True)
|
64 |
+
|
65 |
+
model.eval()
|
66 |
+
with torch.no_grad():
|
67 |
+
scores = {
|
68 |
+
'lpips': [],
|
69 |
+
'mse': [],
|
70 |
+
'ssim': [],
|
71 |
+
'psnr': [],
|
72 |
+
}
|
73 |
+
for batch in tqdm(val_loader, desc='lpips'):
|
74 |
+
imgs = batch['img'].to(device)
|
75 |
+
|
76 |
+
if use_inverted_noise:
|
77 |
+
# inverse the noise
|
78 |
+
# with condition from the encoder
|
79 |
+
model_kwargs = {}
|
80 |
+
if conf.model_type.has_autoenc():
|
81 |
+
with torch.no_grad():
|
82 |
+
model_kwargs = model.encode(imgs)
|
83 |
+
x_T = sampler.ddim_reverse_sample_loop(
|
84 |
+
model=model,
|
85 |
+
x=imgs,
|
86 |
+
clip_denoised=True,
|
87 |
+
model_kwargs=model_kwargs)
|
88 |
+
x_T = x_T['sample']
|
89 |
+
else:
|
90 |
+
x_T = torch.randn((len(imgs), 3, conf.img_size, conf.img_size),
|
91 |
+
device=device)
|
92 |
+
|
93 |
+
if conf.model_type == ModelType.ddpm:
|
94 |
+
# the case where you want to calculate the inversion capability of the DDIM model
|
95 |
+
assert use_inverted_noise
|
96 |
+
pred_imgs = render_uncondition(
|
97 |
+
conf=conf,
|
98 |
+
model=model,
|
99 |
+
x_T=x_T,
|
100 |
+
sampler=sampler,
|
101 |
+
latent_sampler=latent_sampler,
|
102 |
+
)
|
103 |
+
else:
|
104 |
+
pred_imgs = render_condition(conf=conf,
|
105 |
+
model=model,
|
106 |
+
x_T=x_T,
|
107 |
+
x_start=imgs,
|
108 |
+
cond=None,
|
109 |
+
sampler=sampler)
|
110 |
+
# # returns {'cond', 'cond2'}
|
111 |
+
# conds = model.encode(imgs)
|
112 |
+
# pred_imgs = sampler.sample(model=model,
|
113 |
+
# noise=x_T,
|
114 |
+
# model_kwargs=conds)
|
115 |
+
|
116 |
+
# (n, 1, 1, 1) => (n, )
|
117 |
+
scores['lpips'].append(lpips_fn.forward(imgs, pred_imgs).view(-1))
|
118 |
+
|
119 |
+
# need to normalize into [0, 1]
|
120 |
+
norm_imgs = (imgs + 1) / 2
|
121 |
+
norm_pred_imgs = (pred_imgs + 1) / 2
|
122 |
+
# (n, )
|
123 |
+
scores['ssim'].append(
|
124 |
+
ssim(norm_imgs, norm_pred_imgs, size_average=False))
|
125 |
+
# (n, )
|
126 |
+
scores['mse'].append(
|
127 |
+
(norm_imgs - norm_pred_imgs).pow(2).mean(dim=[1, 2, 3]))
|
128 |
+
# (n, )
|
129 |
+
scores['psnr'].append(psnr(norm_imgs, norm_pred_imgs))
|
130 |
+
# (N, )
|
131 |
+
for key in scores.keys():
|
132 |
+
scores[key] = torch.cat(scores[key]).float()
|
133 |
+
model.train()
|
134 |
+
|
135 |
+
barrier()
|
136 |
+
|
137 |
+
# support multi-gpu
|
138 |
+
outs = {
|
139 |
+
key: [
|
140 |
+
torch.zeros(len(scores[key]), device=device)
|
141 |
+
for i in range(get_world_size())
|
142 |
+
]
|
143 |
+
for key in scores.keys()
|
144 |
+
}
|
145 |
+
for key in scores.keys():
|
146 |
+
all_gather(outs[key], scores[key])
|
147 |
+
|
148 |
+
# final scores
|
149 |
+
for key in scores.keys():
|
150 |
+
scores[key] = torch.cat(outs[key]).mean().item()
|
151 |
+
|
152 |
+
# {'lpips', 'mse', 'ssim'}
|
153 |
+
return scores
|
154 |
+
|
155 |
+
|
156 |
+
def psnr(img1, img2):
|
157 |
+
"""
|
158 |
+
Args:
|
159 |
+
img1: (n, c, h, w)
|
160 |
+
"""
|
161 |
+
v_max = 1.
|
162 |
+
# (n,)
|
163 |
+
mse = torch.mean((img1 - img2)**2, dim=[1, 2, 3])
|
164 |
+
return 20 * torch.log10(v_max / torch.sqrt(mse))
|
165 |
+
|
166 |
+
|
167 |
+
def evaluate_fid(
|
168 |
+
sampler: Sampler,
|
169 |
+
model: Model,
|
170 |
+
conf: TrainConfig,
|
171 |
+
device,
|
172 |
+
train_data,
|
173 |
+
val_data,
|
174 |
+
latent_sampler: Sampler = None,
|
175 |
+
conds_mean=None,
|
176 |
+
conds_std=None,
|
177 |
+
remove_cache: bool = True,
|
178 |
+
clip_latent_noise: bool = False,
|
179 |
+
):
|
180 |
+
assert conf.fid_cache is not None
|
181 |
+
if get_rank() == 0:
|
182 |
+
# no parallel
|
183 |
+
# validation data for a comparing FID
|
184 |
+
val_loader = make_subset_loader(conf,
|
185 |
+
dataset=val_data,
|
186 |
+
batch_size=conf.batch_size_eval,
|
187 |
+
shuffle=False,
|
188 |
+
parallel=False)
|
189 |
+
|
190 |
+
# put the val images to a directory
|
191 |
+
cache_dir = f'{conf.fid_cache}_{conf.eval_num_images}'
|
192 |
+
if (os.path.exists(cache_dir)
|
193 |
+
and len(os.listdir(cache_dir)) < conf.eval_num_images):
|
194 |
+
shutil.rmtree(cache_dir)
|
195 |
+
|
196 |
+
if not os.path.exists(cache_dir):
|
197 |
+
# write files to the cache
|
198 |
+
# the images are normalized, hence need to denormalize first
|
199 |
+
loader_to_path(val_loader, cache_dir, denormalize=True)
|
200 |
+
|
201 |
+
# create the generate dir
|
202 |
+
if os.path.exists(conf.generate_dir):
|
203 |
+
shutil.rmtree(conf.generate_dir)
|
204 |
+
os.makedirs(conf.generate_dir)
|
205 |
+
|
206 |
+
barrier()
|
207 |
+
|
208 |
+
world_size = get_world_size()
|
209 |
+
rank = get_rank()
|
210 |
+
batch_size = chunk_size(conf.batch_size_eval, rank, world_size)
|
211 |
+
|
212 |
+
def filename(idx):
|
213 |
+
return world_size * idx + rank
|
214 |
+
|
215 |
+
model.eval()
|
216 |
+
with torch.no_grad():
|
217 |
+
if conf.model_type.can_sample():
|
218 |
+
eval_num_images = chunk_size(conf.eval_num_images, rank,
|
219 |
+
world_size)
|
220 |
+
desc = "generating images"
|
221 |
+
for i in trange(0, eval_num_images, batch_size, desc=desc):
|
222 |
+
batch_size = min(batch_size, eval_num_images - i)
|
223 |
+
x_T = torch.randn(
|
224 |
+
(batch_size, 3, conf.img_size, conf.img_size),
|
225 |
+
device=device)
|
226 |
+
batch_images = render_uncondition(
|
227 |
+
conf=conf,
|
228 |
+
model=model,
|
229 |
+
x_T=x_T,
|
230 |
+
sampler=sampler,
|
231 |
+
latent_sampler=latent_sampler,
|
232 |
+
conds_mean=conds_mean,
|
233 |
+
conds_std=conds_std).cpu()
|
234 |
+
|
235 |
+
batch_images = (batch_images + 1) / 2
|
236 |
+
# keep the generated images
|
237 |
+
for j in range(len(batch_images)):
|
238 |
+
img_name = filename(i + j)
|
239 |
+
torchvision.utils.save_image(
|
240 |
+
batch_images[j],
|
241 |
+
os.path.join(conf.generate_dir, f'{img_name}.png'))
|
242 |
+
elif conf.model_type == ModelType.autoencoder:
|
243 |
+
if conf.train_mode.is_latent_diffusion():
|
244 |
+
# evaluate autoencoder + latent diffusion (doesn't give the images)
|
245 |
+
model: BeatGANsAutoencModel
|
246 |
+
eval_num_images = chunk_size(conf.eval_num_images, rank,
|
247 |
+
world_size)
|
248 |
+
desc = "generating images"
|
249 |
+
for i in trange(0, eval_num_images, batch_size, desc=desc):
|
250 |
+
batch_size = min(batch_size, eval_num_images - i)
|
251 |
+
x_T = torch.randn(
|
252 |
+
(batch_size, 3, conf.img_size, conf.img_size),
|
253 |
+
device=device)
|
254 |
+
batch_images = render_uncondition(
|
255 |
+
conf=conf,
|
256 |
+
model=model,
|
257 |
+
x_T=x_T,
|
258 |
+
sampler=sampler,
|
259 |
+
latent_sampler=latent_sampler,
|
260 |
+
conds_mean=conds_mean,
|
261 |
+
conds_std=conds_std,
|
262 |
+
clip_latent_noise=clip_latent_noise,
|
263 |
+
).cpu()
|
264 |
+
batch_images = (batch_images + 1) / 2
|
265 |
+
# keep the generated images
|
266 |
+
for j in range(len(batch_images)):
|
267 |
+
img_name = filename(i + j)
|
268 |
+
torchvision.utils.save_image(
|
269 |
+
batch_images[j],
|
270 |
+
os.path.join(conf.generate_dir, f'{img_name}.png'))
|
271 |
+
else:
|
272 |
+
# evaulate autoencoder (given the images)
|
273 |
+
# to make the FID fair, autoencoder must not see the validation dataset
|
274 |
+
# also shuffle to make it closer to unconditional generation
|
275 |
+
train_loader = make_subset_loader(conf,
|
276 |
+
dataset=train_data,
|
277 |
+
batch_size=batch_size,
|
278 |
+
shuffle=True,
|
279 |
+
parallel=True)
|
280 |
+
|
281 |
+
i = 0
|
282 |
+
for batch in tqdm(train_loader, desc='generating images'):
|
283 |
+
imgs = batch['img'].to(device)
|
284 |
+
x_T = torch.randn(
|
285 |
+
(len(imgs), 3, conf.img_size, conf.img_size),
|
286 |
+
device=device)
|
287 |
+
batch_images = render_condition(
|
288 |
+
conf=conf,
|
289 |
+
model=model,
|
290 |
+
x_T=x_T,
|
291 |
+
x_start=imgs,
|
292 |
+
cond=None,
|
293 |
+
sampler=sampler,
|
294 |
+
latent_sampler=latent_sampler).cpu()
|
295 |
+
# model: BeatGANsAutoencModel
|
296 |
+
# # returns {'cond', 'cond2'}
|
297 |
+
# conds = model.encode(imgs)
|
298 |
+
# batch_images = sampler.sample(model=model,
|
299 |
+
# noise=x_T,
|
300 |
+
# model_kwargs=conds).cpu()
|
301 |
+
# denormalize the images
|
302 |
+
batch_images = (batch_images + 1) / 2
|
303 |
+
# keep the generated images
|
304 |
+
for j in range(len(batch_images)):
|
305 |
+
img_name = filename(i + j)
|
306 |
+
torchvision.utils.save_image(
|
307 |
+
batch_images[j],
|
308 |
+
os.path.join(conf.generate_dir, f'{img_name}.png'))
|
309 |
+
i += len(imgs)
|
310 |
+
else:
|
311 |
+
raise NotImplementedError()
|
312 |
+
model.train()
|
313 |
+
|
314 |
+
barrier()
|
315 |
+
|
316 |
+
if get_rank() == 0:
|
317 |
+
fid = fid_score.calculate_fid_given_paths(
|
318 |
+
[cache_dir, conf.generate_dir],
|
319 |
+
batch_size,
|
320 |
+
device=device,
|
321 |
+
dims=2048)
|
322 |
+
|
323 |
+
# remove the cache
|
324 |
+
if remove_cache and os.path.exists(conf.generate_dir):
|
325 |
+
shutil.rmtree(conf.generate_dir)
|
326 |
+
|
327 |
+
barrier()
|
328 |
+
|
329 |
+
if get_rank() == 0:
|
330 |
+
# need to float it! unless the broadcasted value is wrong
|
331 |
+
fid = torch.tensor(float(fid), device=device)
|
332 |
+
broadcast(fid, 0)
|
333 |
+
else:
|
334 |
+
fid = torch.tensor(0., device=device)
|
335 |
+
broadcast(fid, 0)
|
336 |
+
fid = fid.item()
|
337 |
+
print(f'fid ({get_rank()}):', fid)
|
338 |
+
|
339 |
+
return fid
|
340 |
+
|
341 |
+
|
342 |
+
def loader_to_path(loader: DataLoader, path: str, denormalize: bool):
|
343 |
+
# not process safe!
|
344 |
+
|
345 |
+
if not os.path.exists(path):
|
346 |
+
os.makedirs(path)
|
347 |
+
|
348 |
+
# write the loader to files
|
349 |
+
i = 0
|
350 |
+
for batch in tqdm(loader, desc='copy images'):
|
351 |
+
imgs = batch['img']
|
352 |
+
if denormalize:
|
353 |
+
imgs = (imgs + 1) / 2
|
354 |
+
for j in range(len(imgs)):
|
355 |
+
torchvision.utils.save_image(imgs[j],
|
356 |
+
os.path.join(path, f'{i+j}.png'))
|
357 |
+
i += len(imgs)
|
DiffAE_support_renderer.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .DiffAE_support_config import *
|
2 |
+
from .DiffAE_diffusion_diffusion import SpacedDiffusionBeatGans as Sampler
|
3 |
+
from .DiffAE_model_unet_autoenc import BeatGANsAutoencModel
|
4 |
+
|
5 |
+
from torch.cuda import amp
|
6 |
+
|
7 |
+
|
8 |
+
def render_uncondition(conf: TrainConfig,
|
9 |
+
model: BeatGANsAutoencModel,
|
10 |
+
x_T,
|
11 |
+
sampler: Sampler,
|
12 |
+
latent_sampler: Sampler,
|
13 |
+
conds_mean=None,
|
14 |
+
conds_std=None,
|
15 |
+
clip_latent_noise: bool = False):
|
16 |
+
device = x_T.device
|
17 |
+
if conf.train_mode == TrainMode.diffusion:
|
18 |
+
assert conf.model_type.can_sample()
|
19 |
+
return sampler.sample(model=model, noise=x_T)
|
20 |
+
elif conf.train_mode.is_latent_diffusion():
|
21 |
+
model: BeatGANsAutoencModel
|
22 |
+
if conf.train_mode == TrainMode.latent_diffusion:
|
23 |
+
latent_noise = torch.randn(len(x_T), conf.style_ch, device=device)
|
24 |
+
else:
|
25 |
+
raise NotImplementedError()
|
26 |
+
|
27 |
+
if clip_latent_noise:
|
28 |
+
latent_noise = latent_noise.clip(-1, 1)
|
29 |
+
|
30 |
+
cond = latent_sampler.sample(
|
31 |
+
model=model.latent_net,
|
32 |
+
noise=latent_noise,
|
33 |
+
clip_denoised=conf.latent_clip_sample,
|
34 |
+
)
|
35 |
+
|
36 |
+
if conf.latent_znormalize:
|
37 |
+
cond = cond * conds_std.to(device) + conds_mean.to(device)
|
38 |
+
|
39 |
+
# the diffusion on the model
|
40 |
+
return sampler.sample(model=model, noise=x_T, cond=cond)
|
41 |
+
else:
|
42 |
+
raise NotImplementedError()
|
43 |
+
|
44 |
+
|
45 |
+
def render_condition(
|
46 |
+
conf: TrainConfig,
|
47 |
+
model: BeatGANsAutoencModel,
|
48 |
+
x_T,
|
49 |
+
sampler: Sampler,
|
50 |
+
x_start=None,
|
51 |
+
cond=None,
|
52 |
+
):
|
53 |
+
if conf.train_mode == TrainMode.diffusion:
|
54 |
+
assert conf.model_type.has_autoenc()
|
55 |
+
# returns {'cond', 'cond2'}
|
56 |
+
if cond is None:
|
57 |
+
cond = model.encode(x_start)
|
58 |
+
return sampler.sample(model=model,
|
59 |
+
noise=x_T,
|
60 |
+
model_kwargs={'cond': cond})
|
61 |
+
else:
|
62 |
+
raise NotImplementedError()
|
DiffAE_support_templates.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .DiffAE_support_config import *
|
2 |
+
|
3 |
+
|
4 |
+
def ddpm():
|
5 |
+
"""
|
6 |
+
base configuration for all DDIM-based models.
|
7 |
+
"""
|
8 |
+
conf = TrainConfig()
|
9 |
+
conf.batch_size = 32
|
10 |
+
conf.beatgans_gen_type = GenerativeType.ddim
|
11 |
+
conf.beta_scheduler = 'linear'
|
12 |
+
conf.data_name = 'ffhq'
|
13 |
+
conf.diffusion_type = 'beatgans'
|
14 |
+
conf.eval_ema_every_samples = 200_000
|
15 |
+
conf.eval_every_samples = 200_000
|
16 |
+
conf.fp16 = True
|
17 |
+
conf.lr = 1e-4
|
18 |
+
conf.model_name = ModelName.beatgans_ddpm
|
19 |
+
conf.net_attn = (16, )
|
20 |
+
conf.net_beatgans_attn_head = 1
|
21 |
+
conf.net_beatgans_embed_channels = 512
|
22 |
+
conf.net_ch_mult = (1, 2, 4, 8)
|
23 |
+
conf.net_ch = 64
|
24 |
+
conf.sample_size = 32
|
25 |
+
conf.T_eval = 20
|
26 |
+
conf.T = 1000
|
27 |
+
conf.make_model_conf()
|
28 |
+
return conf
|
29 |
+
|
30 |
+
|
31 |
+
def autoenc_base():
|
32 |
+
"""
|
33 |
+
base configuration for all Diff-AE models.
|
34 |
+
"""
|
35 |
+
conf = TrainConfig()
|
36 |
+
conf.batch_size = 32
|
37 |
+
conf.beatgans_gen_type = GenerativeType.ddim
|
38 |
+
conf.beta_scheduler = 'linear'
|
39 |
+
conf.data_name = 'ffhq'
|
40 |
+
conf.diffusion_type = 'beatgans'
|
41 |
+
conf.eval_ema_every_samples = 200_000
|
42 |
+
conf.eval_every_samples = 200_000
|
43 |
+
conf.fp16 = True
|
44 |
+
conf.lr = 1e-4
|
45 |
+
conf.model_name = ModelName.beatgans_autoenc
|
46 |
+
conf.net_attn = (16, )
|
47 |
+
conf.net_beatgans_attn_head = 1
|
48 |
+
conf.net_beatgans_embed_channels = 512
|
49 |
+
conf.net_beatgans_resnet_two_cond = True
|
50 |
+
conf.net_ch_mult = (1, 2, 4, 8)
|
51 |
+
conf.net_ch = 64
|
52 |
+
conf.net_enc_channel_mult = (1, 2, 4, 8, 8)
|
53 |
+
conf.net_enc_pool = 'adaptivenonzero'
|
54 |
+
conf.sample_size = 32
|
55 |
+
conf.T_eval = 20
|
56 |
+
conf.T = 1000
|
57 |
+
conf.make_model_conf()
|
58 |
+
return conf
|
59 |
+
|
60 |
+
def ffhq64_ddpm():
|
61 |
+
conf = ddpm()
|
62 |
+
conf.data_name = 'ffhqlmdb256'
|
63 |
+
conf.warmup = 0
|
64 |
+
conf.total_samples = 72_000_000
|
65 |
+
conf.scale_up_gpus(4)
|
66 |
+
return conf
|
67 |
+
|
68 |
+
|
69 |
+
def ffhq64_autoenc():
|
70 |
+
conf = autoenc_base()
|
71 |
+
conf.data_name = 'ffhqlmdb256'
|
72 |
+
conf.warmup = 0
|
73 |
+
conf.total_samples = 72_000_000
|
74 |
+
conf.net_ch_mult = (1, 2, 4, 8)
|
75 |
+
conf.net_enc_channel_mult = (1, 2, 4, 8, 8)
|
76 |
+
conf.eval_every_samples = 1_000_000
|
77 |
+
conf.eval_ema_every_samples = 1_000_000
|
78 |
+
conf.scale_up_gpus(4)
|
79 |
+
conf.make_model_conf()
|
80 |
+
return conf
|
81 |
+
|
82 |
+
|
83 |
+
def celeba64d2c_ddpm():
|
84 |
+
conf = ffhq128_ddpm()
|
85 |
+
conf.data_name = 'celebalmdb'
|
86 |
+
conf.eval_every_samples = 10_000_000
|
87 |
+
conf.eval_ema_every_samples = 10_000_000
|
88 |
+
conf.total_samples = 72_000_000
|
89 |
+
conf.name = 'celeba64d2c_ddpm'
|
90 |
+
return conf
|
91 |
+
|
92 |
+
|
93 |
+
def celeba64d2c_autoenc():
|
94 |
+
conf = ffhq64_autoenc()
|
95 |
+
conf.data_name = 'celebalmdb'
|
96 |
+
conf.eval_every_samples = 10_000_000
|
97 |
+
conf.eval_ema_every_samples = 10_000_000
|
98 |
+
conf.total_samples = 72_000_000
|
99 |
+
conf.name = 'celeba64d2c_autoenc'
|
100 |
+
return conf
|
101 |
+
|
102 |
+
|
103 |
+
def ffhq128_ddpm():
|
104 |
+
conf = ddpm()
|
105 |
+
conf.data_name = 'ffhqlmdb256'
|
106 |
+
conf.warmup = 0
|
107 |
+
conf.total_samples = 48_000_000
|
108 |
+
conf.img_size = 128
|
109 |
+
conf.net_ch = 128
|
110 |
+
# channels:
|
111 |
+
# 3 => 128 * 1 => 128 * 1 => 128 * 2 => 128 * 3 => 128 * 4
|
112 |
+
# sizes:
|
113 |
+
# 128 => 128 => 64 => 32 => 16 => 8
|
114 |
+
conf.net_ch_mult = (1, 1, 2, 3, 4)
|
115 |
+
conf.eval_every_samples = 1_000_000
|
116 |
+
conf.eval_ema_every_samples = 1_000_000
|
117 |
+
conf.scale_up_gpus(4)
|
118 |
+
conf.eval_ema_every_samples = 10_000_000
|
119 |
+
conf.eval_every_samples = 10_000_000
|
120 |
+
conf.make_model_conf()
|
121 |
+
return conf
|
122 |
+
|
123 |
+
|
124 |
+
def ffhq128_autoenc_base():
|
125 |
+
conf = autoenc_base()
|
126 |
+
conf.data_name = 'ffhqlmdb256'
|
127 |
+
conf.scale_up_gpus(4)
|
128 |
+
conf.img_size = 128
|
129 |
+
conf.net_ch = 128
|
130 |
+
# final resolution = 8x8
|
131 |
+
conf.net_ch_mult = (1, 1, 2, 3, 4)
|
132 |
+
# final resolution = 4x4
|
133 |
+
conf.net_enc_channel_mult = (1, 1, 2, 3, 4, 4)
|
134 |
+
conf.eval_ema_every_samples = 10_000_000
|
135 |
+
conf.eval_every_samples = 10_000_000
|
136 |
+
conf.make_model_conf()
|
137 |
+
return conf
|
138 |
+
|
139 |
+
def ffhq256_autoenc():
|
140 |
+
conf = ffhq128_autoenc_base()
|
141 |
+
conf.img_size = 256
|
142 |
+
conf.net_ch = 128
|
143 |
+
conf.net_ch_mult = (1, 1, 2, 2, 4, 4)
|
144 |
+
conf.net_enc_channel_mult = (1, 1, 2, 2, 4, 4, 4)
|
145 |
+
conf.eval_every_samples = 10_000_000
|
146 |
+
conf.eval_ema_every_samples = 10_000_000
|
147 |
+
conf.total_samples = 200_000_000
|
148 |
+
conf.batch_size = 64
|
149 |
+
conf.make_model_conf()
|
150 |
+
conf.name = 'ffhq256_autoenc'
|
151 |
+
return conf
|
152 |
+
|
153 |
+
|
154 |
+
def ffhq256_autoenc_eco():
|
155 |
+
conf = ffhq128_autoenc_base()
|
156 |
+
conf.img_size = 256
|
157 |
+
conf.net_ch = 128
|
158 |
+
conf.net_ch_mult = (1, 1, 2, 2, 4, 4)
|
159 |
+
conf.net_enc_channel_mult = (1, 1, 2, 2, 4, 4, 4)
|
160 |
+
conf.eval_every_samples = 10_000_000
|
161 |
+
conf.eval_ema_every_samples = 10_000_000
|
162 |
+
conf.total_samples = 200_000_000
|
163 |
+
conf.batch_size = 64
|
164 |
+
conf.make_model_conf()
|
165 |
+
conf.name = 'ffhq256_autoenc_eco'
|
166 |
+
return conf
|
167 |
+
|
168 |
+
|
169 |
+
def ffhq128_ddpm_72M():
|
170 |
+
conf = ffhq128_ddpm()
|
171 |
+
conf.total_samples = 72_000_000
|
172 |
+
conf.name = 'ffhq128_ddpm_72M'
|
173 |
+
return conf
|
174 |
+
|
175 |
+
|
176 |
+
def ffhq128_autoenc_72M():
|
177 |
+
conf = ffhq128_autoenc_base()
|
178 |
+
conf.total_samples = 72_000_000
|
179 |
+
conf.name = 'ffhq128_autoenc_72M'
|
180 |
+
return conf
|
181 |
+
|
182 |
+
|
183 |
+
def ffhq128_ddpm_130M():
|
184 |
+
conf = ffhq128_ddpm()
|
185 |
+
conf.total_samples = 130_000_000
|
186 |
+
conf.eval_ema_every_samples = 10_000_000
|
187 |
+
conf.eval_every_samples = 10_000_000
|
188 |
+
conf.name = 'ffhq128_ddpm_130M'
|
189 |
+
return conf
|
190 |
+
|
191 |
+
|
192 |
+
def ffhq128_autoenc_130M():
|
193 |
+
conf = ffhq128_autoenc_base()
|
194 |
+
conf.total_samples = 130_000_000
|
195 |
+
conf.eval_ema_every_samples = 10_000_000
|
196 |
+
conf.eval_every_samples = 10_000_000
|
197 |
+
conf.name = 'ffhq128_autoenc_130M'
|
198 |
+
return conf
|
199 |
+
|
200 |
+
#created from ffhq128_autoenc_130M
|
201 |
+
def ukbb_autoenc(ds_name="ukbb", n_latents=128):
|
202 |
+
conf = TrainConfig()
|
203 |
+
conf.beatgans_gen_type = GenerativeType.ddim
|
204 |
+
conf.beta_scheduler = 'linear'
|
205 |
+
conf.diffusion_type = 'beatgans'
|
206 |
+
conf.fp16 = True
|
207 |
+
conf.model_name = ModelName.beatgans_autoenc
|
208 |
+
conf.net_attn = (16, )
|
209 |
+
conf.net_beatgans_attn_head = 1
|
210 |
+
conf.net_beatgans_embed_channels = n_latents
|
211 |
+
conf.style_ch = n_latents
|
212 |
+
conf.net_beatgans_resnet_two_cond = True
|
213 |
+
conf.net_enc_pool = 'adaptivenonzero'
|
214 |
+
conf.sample_size = 32
|
215 |
+
conf.T_eval = 20
|
216 |
+
conf.T = 1000
|
217 |
+
|
218 |
+
conf.T_inv = 200
|
219 |
+
conf.T_step = 100
|
220 |
+
|
221 |
+
conf.data_name = ds_name
|
222 |
+
conf.net_ch_mult = (1, 1, 2, 3, 4)
|
223 |
+
conf.net_enc_channel_mult = (1, 1, 2, 3, 4, 4)
|
224 |
+
|
225 |
+
conf.name = 'ukbb_ffhq128_autoenc'
|
226 |
+
return conf
|
227 |
+
|
228 |
+
|
229 |
+
def horse128_ddpm():
|
230 |
+
conf = ffhq128_ddpm()
|
231 |
+
conf.data_name = 'horse256'
|
232 |
+
conf.total_samples = 130_000_000
|
233 |
+
conf.eval_ema_every_samples = 10_000_000
|
234 |
+
conf.eval_every_samples = 10_000_000
|
235 |
+
conf.name = 'horse128_ddpm'
|
236 |
+
return conf
|
237 |
+
|
238 |
+
|
239 |
+
def horse128_autoenc():
|
240 |
+
conf = ffhq128_autoenc_base()
|
241 |
+
conf.data_name = 'horse256'
|
242 |
+
conf.total_samples = 130_000_000
|
243 |
+
conf.eval_ema_every_samples = 10_000_000
|
244 |
+
conf.eval_every_samples = 10_000_000
|
245 |
+
conf.name = 'horse128_autoenc'
|
246 |
+
return conf
|
247 |
+
|
248 |
+
|
249 |
+
def bedroom128_ddpm():
|
250 |
+
conf = ffhq128_ddpm()
|
251 |
+
conf.data_name = 'bedroom256'
|
252 |
+
conf.eval_ema_every_samples = 10_000_000
|
253 |
+
conf.eval_every_samples = 10_000_000
|
254 |
+
conf.total_samples = 120_000_000
|
255 |
+
conf.name = 'bedroom128_ddpm'
|
256 |
+
return conf
|
257 |
+
|
258 |
+
|
259 |
+
def bedroom128_autoenc():
|
260 |
+
conf = ffhq128_autoenc_base()
|
261 |
+
conf.data_name = 'bedroom256'
|
262 |
+
conf.eval_ema_every_samples = 10_000_000
|
263 |
+
conf.eval_every_samples = 10_000_000
|
264 |
+
conf.total_samples = 120_000_000
|
265 |
+
conf.name = 'bedroom128_autoenc'
|
266 |
+
return conf
|
267 |
+
|
268 |
+
|
269 |
+
def pretrain_celeba64d2c_72M():
|
270 |
+
conf = celeba64d2c_autoenc()
|
271 |
+
conf.pretrain = PretrainConfig(
|
272 |
+
name='72M',
|
273 |
+
path=f'checkpoints/{celeba64d2c_autoenc().name}/last.ckpt',
|
274 |
+
)
|
275 |
+
conf.latent_infer_path = f'checkpoints/{celeba64d2c_autoenc().name}/latent.pkl'
|
276 |
+
return conf
|
277 |
+
|
278 |
+
|
279 |
+
def pretrain_ffhq128_autoenc72M():
|
280 |
+
conf = ffhq128_autoenc_base()
|
281 |
+
conf.postfix = ''
|
282 |
+
conf.pretrain = PretrainConfig(
|
283 |
+
name='72M',
|
284 |
+
path=f'checkpoints/{ffhq128_autoenc_72M().name}/last.ckpt',
|
285 |
+
)
|
286 |
+
conf.latent_infer_path = f'checkpoints/{ffhq128_autoenc_72M().name}/latent.pkl'
|
287 |
+
return conf
|
288 |
+
|
289 |
+
|
290 |
+
def pretrain_ffhq128_autoenc130M():
|
291 |
+
conf = ffhq128_autoenc_base()
|
292 |
+
conf.pretrain = PretrainConfig(
|
293 |
+
name='130M',
|
294 |
+
path=f'checkpoints/{ffhq128_autoenc_130M().name}/last.ckpt',
|
295 |
+
)
|
296 |
+
conf.latent_infer_path = f'checkpoints/{ffhq128_autoenc_130M().name}/latent.pkl'
|
297 |
+
return conf
|
298 |
+
|
299 |
+
|
300 |
+
def pretrain_ffhq256_autoenc():
|
301 |
+
conf = ffhq256_autoenc()
|
302 |
+
conf.pretrain = PretrainConfig(
|
303 |
+
name='90M',
|
304 |
+
path=f'checkpoints/{ffhq256_autoenc().name}/last.ckpt',
|
305 |
+
)
|
306 |
+
conf.latent_infer_path = f'checkpoints/{ffhq256_autoenc().name}/latent.pkl'
|
307 |
+
return conf
|
308 |
+
|
309 |
+
|
310 |
+
def pretrain_horse128():
|
311 |
+
conf = horse128_autoenc()
|
312 |
+
conf.pretrain = PretrainConfig(
|
313 |
+
name='82M',
|
314 |
+
path=f'checkpoints/{horse128_autoenc().name}/last.ckpt',
|
315 |
+
)
|
316 |
+
conf.latent_infer_path = f'checkpoints/{horse128_autoenc().name}/latent.pkl'
|
317 |
+
return conf
|
318 |
+
|
319 |
+
|
320 |
+
def pretrain_bedroom128():
|
321 |
+
conf = bedroom128_autoenc()
|
322 |
+
conf.pretrain = PretrainConfig(
|
323 |
+
name='120M',
|
324 |
+
path=f'checkpoints/{bedroom128_autoenc().name}/last.ckpt',
|
325 |
+
)
|
326 |
+
conf.latent_infer_path = f'checkpoints/{bedroom128_autoenc().name}/latent.pkl'
|
327 |
+
return conf
|
DiffAE_support_templates_latent.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .DiffAE_support_templates import *
|
2 |
+
|
3 |
+
|
4 |
+
def latent_diffusion_config(conf: TrainConfig):
|
5 |
+
conf.batch_size = 128
|
6 |
+
conf.train_mode = TrainMode.latent_diffusion
|
7 |
+
conf.latent_gen_type = GenerativeType.ddim
|
8 |
+
conf.latent_loss_type = LossType.mse
|
9 |
+
conf.latent_model_mean_type = ModelMeanType.eps
|
10 |
+
conf.latent_model_var_type = ModelVarType.fixed_large
|
11 |
+
conf.latent_rescale_timesteps = False
|
12 |
+
conf.latent_clip_sample = False
|
13 |
+
conf.latent_T_eval = 20
|
14 |
+
conf.latent_znormalize = True
|
15 |
+
conf.total_samples = 96_000_000
|
16 |
+
conf.sample_every_samples = 400_000
|
17 |
+
conf.eval_every_samples = 20_000_000
|
18 |
+
conf.eval_ema_every_samples = 20_000_000
|
19 |
+
conf.save_every_samples = 2_000_000
|
20 |
+
return conf
|
21 |
+
|
22 |
+
|
23 |
+
def latent_diffusion128_config(conf: TrainConfig):
|
24 |
+
conf = latent_diffusion_config(conf)
|
25 |
+
conf.batch_size_eval = 32
|
26 |
+
return conf
|
27 |
+
|
28 |
+
|
29 |
+
def latent_mlp_2048_norm_10layers(conf: TrainConfig):
|
30 |
+
conf.net_latent_net_type = LatentNetType.skip
|
31 |
+
conf.net_latent_layers = 10
|
32 |
+
conf.net_latent_skip_layers = list(range(1, conf.net_latent_layers))
|
33 |
+
conf.net_latent_activation = Activation.silu
|
34 |
+
conf.net_latent_num_hid_channels = 2048
|
35 |
+
conf.net_latent_use_norm = True
|
36 |
+
conf.net_latent_condition_bias = 1
|
37 |
+
return conf
|
38 |
+
|
39 |
+
|
40 |
+
def latent_mlp_2048_norm_20layers(conf: TrainConfig):
|
41 |
+
conf = latent_mlp_2048_norm_10layers(conf)
|
42 |
+
conf.net_latent_layers = 20
|
43 |
+
conf.net_latent_skip_layers = list(range(1, conf.net_latent_layers))
|
44 |
+
return conf
|
45 |
+
|
46 |
+
|
47 |
+
def latent_256_batch_size(conf: TrainConfig):
|
48 |
+
conf.batch_size = 256
|
49 |
+
conf.eval_ema_every_samples = 100_000_000
|
50 |
+
conf.eval_every_samples = 100_000_000
|
51 |
+
conf.sample_every_samples = 1_000_000
|
52 |
+
conf.save_every_samples = 2_000_000
|
53 |
+
conf.total_samples = 301_000_000
|
54 |
+
return conf
|
55 |
+
|
56 |
+
|
57 |
+
def latent_512_batch_size(conf: TrainConfig):
|
58 |
+
conf.batch_size = 512
|
59 |
+
conf.eval_ema_every_samples = 100_000_000
|
60 |
+
conf.eval_every_samples = 100_000_000
|
61 |
+
conf.sample_every_samples = 1_000_000
|
62 |
+
conf.save_every_samples = 5_000_000
|
63 |
+
conf.total_samples = 501_000_000
|
64 |
+
return conf
|
65 |
+
|
66 |
+
|
67 |
+
def latent_2048_batch_size(conf: TrainConfig):
|
68 |
+
conf.batch_size = 2048
|
69 |
+
conf.eval_ema_every_samples = 200_000_000
|
70 |
+
conf.eval_every_samples = 200_000_000
|
71 |
+
conf.sample_every_samples = 4_000_000
|
72 |
+
conf.save_every_samples = 20_000_000
|
73 |
+
conf.total_samples = 1_501_000_000
|
74 |
+
return conf
|
75 |
+
|
76 |
+
|
77 |
+
def adamw_weight_decay(conf: TrainConfig):
|
78 |
+
conf.optimizer = OptimizerType.adamw
|
79 |
+
conf.weight_decay = 0.01
|
80 |
+
return conf
|
81 |
+
|
82 |
+
|
83 |
+
def ffhq128_autoenc_latent():
|
84 |
+
conf = pretrain_ffhq128_autoenc130M()
|
85 |
+
conf = latent_diffusion128_config(conf)
|
86 |
+
conf = latent_mlp_2048_norm_10layers(conf)
|
87 |
+
conf = latent_256_batch_size(conf)
|
88 |
+
conf = adamw_weight_decay(conf)
|
89 |
+
conf.total_samples = 101_000_000
|
90 |
+
conf.latent_loss_type = LossType.l1
|
91 |
+
conf.latent_beta_scheduler = 'const0.008'
|
92 |
+
conf.name = 'ffhq128_autoenc_latent'
|
93 |
+
return conf
|
94 |
+
|
95 |
+
|
96 |
+
def ffhq256_autoenc_latent():
|
97 |
+
conf = pretrain_ffhq256_autoenc()
|
98 |
+
conf = latent_diffusion128_config(conf)
|
99 |
+
conf = latent_mlp_2048_norm_10layers(conf)
|
100 |
+
conf = latent_256_batch_size(conf)
|
101 |
+
conf = adamw_weight_decay(conf)
|
102 |
+
conf.total_samples = 101_000_000
|
103 |
+
conf.latent_loss_type = LossType.l1
|
104 |
+
conf.latent_beta_scheduler = 'const0.008'
|
105 |
+
conf.eval_ema_every_samples = 200_000_000
|
106 |
+
conf.eval_every_samples = 200_000_000
|
107 |
+
conf.sample_every_samples = 4_000_000
|
108 |
+
conf.name = 'ffhq256_autoenc_latent'
|
109 |
+
return conf
|
110 |
+
|
111 |
+
|
112 |
+
def horse128_autoenc_latent():
|
113 |
+
conf = pretrain_horse128()
|
114 |
+
conf = latent_diffusion128_config(conf)
|
115 |
+
conf = latent_2048_batch_size(conf)
|
116 |
+
conf = latent_mlp_2048_norm_20layers(conf)
|
117 |
+
conf.total_samples = 2_001_000_000
|
118 |
+
conf.latent_beta_scheduler = 'const0.008'
|
119 |
+
conf.latent_loss_type = LossType.l1
|
120 |
+
conf.name = 'horse128_autoenc_latent'
|
121 |
+
return conf
|
122 |
+
|
123 |
+
|
124 |
+
def bedroom128_autoenc_latent():
|
125 |
+
conf = pretrain_bedroom128()
|
126 |
+
conf = latent_diffusion128_config(conf)
|
127 |
+
conf = latent_2048_batch_size(conf)
|
128 |
+
conf = latent_mlp_2048_norm_20layers(conf)
|
129 |
+
conf.total_samples = 2_001_000_000
|
130 |
+
conf.latent_beta_scheduler = 'const0.008'
|
131 |
+
conf.latent_loss_type = LossType.l1
|
132 |
+
conf.name = 'bedroom128_autoenc_latent'
|
133 |
+
return conf
|
134 |
+
|
135 |
+
|
136 |
+
def celeba64d2c_autoenc_latent():
|
137 |
+
conf = pretrain_celeba64d2c_72M()
|
138 |
+
conf = latent_diffusion_config(conf)
|
139 |
+
conf = latent_512_batch_size(conf)
|
140 |
+
conf = latent_mlp_2048_norm_10layers(conf)
|
141 |
+
conf = adamw_weight_decay(conf)
|
142 |
+
# just for the name
|
143 |
+
conf.continue_from = PretrainConfig('200M',
|
144 |
+
f'log-latent/{conf.name}/last.ckpt')
|
145 |
+
conf.postfix = '_300M'
|
146 |
+
conf.total_samples = 301_000_000
|
147 |
+
conf.latent_beta_scheduler = 'const0.008'
|
148 |
+
conf.latent_loss_type = LossType.l1
|
149 |
+
conf.name = 'celeba64d2c_autoenc_latent'
|
150 |
+
return conf
|
DiffAE_support_utils.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from statistics import median
|
2 |
+
from skimage.metrics import structural_similarity
|
3 |
+
|
4 |
+
def getSSIM(gt, out, gt_flag=None, data_range=1):
|
5 |
+
if gt_flag is None: # all of the samples have GTs
|
6 |
+
gt_flag = [True]*gt.shape[0]
|
7 |
+
|
8 |
+
vals = []
|
9 |
+
for i in range(gt.shape[0]):
|
10 |
+
if not gt_flag[i]:
|
11 |
+
continue
|
12 |
+
vals.extend(
|
13 |
+
structural_similarity(
|
14 |
+
gt[i, j, ...], out[i, j, ...], data_range=data_range
|
15 |
+
)
|
16 |
+
for j in range(gt.shape[1])
|
17 |
+
)
|
18 |
+
return median(vals)
|
19 |
+
|
20 |
+
def ema(source, target, decay):
|
21 |
+
source_dict = source.state_dict()
|
22 |
+
target_dict = target.state_dict()
|
23 |
+
for key in source_dict.keys():
|
24 |
+
target_dict[key].data.copy_(target_dict[key].data * decay +
|
25 |
+
source_dict[key].data * (1 - decay))
|
26 |
+
|
27 |
+
|
28 |
+
class WarmupLR:
|
29 |
+
def __init__(self, warmup) -> None:
|
30 |
+
self.warmup = warmup
|
31 |
+
|
32 |
+
def __call__(self, step):
|
33 |
+
return min(step, self.warmup) / self.warmup
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ampmode": "16-mixed",
|
3 |
+
"architectures": [
|
4 |
+
"DiffAE"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "DiffAEConfig.DiffAEConfig",
|
8 |
+
"AutoModel": "DiffAE.DiffAE"
|
9 |
+
},
|
10 |
+
"batch_size": 9,
|
11 |
+
"data_name": "ukbb",
|
12 |
+
"diffusion_type": "beatgans",
|
13 |
+
"grey2RGB": -1,
|
14 |
+
"in_channels": 1,
|
15 |
+
"input_shape": [
|
16 |
+
50,
|
17 |
+
128,
|
18 |
+
128
|
19 |
+
],
|
20 |
+
"is3D": true,
|
21 |
+
"latent_dim": 128,
|
22 |
+
"lr": 0.0001,
|
23 |
+
"model_type": "DiffAE",
|
24 |
+
"net_ch": 32,
|
25 |
+
"out_channels": 1,
|
26 |
+
"sample_every_batches": 1000,
|
27 |
+
"sample_size": 4,
|
28 |
+
"seed": 1701,
|
29 |
+
"test_ema": true,
|
30 |
+
"test_emb_only": true,
|
31 |
+
"test_with_TEval": true,
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.44.2"
|
34 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53c64d2554704def9bd619029d56e00926b27347687d15cc56a8ef3d7f849d45
|
3 |
+
size 179944264
|