--- license: cc-by-nc-4.0 library_name: transformers datasets: - BIOGRID - Negatome pipeline_tag: text-classification tags: - protein language model - biology widget: - text: >- M S H S V K I Y D T C I G C T Q C V R A C P T D V L E M I P W G G C K A K Q I A S A P R T E D C V G C K R C E S A C P T D F L S V R V Y L W H E T T R S M G L A Y [SEP] M I N L P S L F V P L V G L L F P A V A M A S L F L H V E K R L L F S T K K I N example_title: Non-interacting proteins - text: >- M S I N I C R D N H D P F Y R Y K M P P I Q A K V E G R G N G I K T A V L N V A D I S H A L N R P A P Y I V K Y F G F E L G A Q T S I S V D K D R Y L V N G V H E P A K L Q D V L D G F I N K F V L C G S C K N P E T E I I I T K D N D L V R D C K A C G K R T P M D L R H K L S S F I L K N P P D S V S G S K K K K K A A T A S A N V R G G G L S I S D I A Q G K S Q N A P S D G T G S S T P Q H H D E D E D E L S R Q I K A A A S T L E D I E V K D D E W A V D M S E E A I R A R A K E L E V N S E L T Q L D E Y G E W I L E Q A G E D K E N L P S D V E L Y K K A A E L D V L N D P K I G C V L A Q C L F D E D I V N E I A E H N A F F T K I L V T P E Y E K N F M G G I E R F L G L E H K D L I P L L P K I L V Q L Y N N D I I S E E E I M R F G T K S S K K F V P K E V S K K V R R A A K P F I T W L E T A E S D D D E E D D E [SEP] M S I E N L K S F D P F A D T G D D E T A T S N Y I H I R I Q Q R N G R K T L T T V Q G V P E E Y D L K R I L K V L K K D F A C N G N I V K D P E M G E I I Q L Q G D Q R A K V C E F M I S Q L G L Q K K N I K I H G F example_title: Interacting proteins --- [SYNTERACT 2.0](https://huggingface.co/Synthyra/SYNTERACT2) is coming soon, please stay tuned! ## Model description SYNTERACT (SYNThetic data-driven protein-protein intERACtion Transformer) is a fine-tuned version of [ProtBERT](https://huggingface.co/Rostlab/prot_bert_bfd) that attends two amino acid sequences separated by [SEP] to determine if they plausibly interact in biological context. We utilized the multivalidated physical interaction dataset from BIORGID, Negatome, and synthetic negative samples to train our model. Check out our [preprint](https://www.biorxiv.org/content/10.1101/2023.06.07.544109v1.full) for more details. SYNTERACT achieved unprecedented performance over vast phylogeny with 92-96% accuracy on real unseen examples, and is already being used to accelerate drug target screening and peptide therapeutic design. ## How to use ```python # Imports import re import torch import torch.nn.functional as F from transformers import BertForSequenceClassification, BertTokenizer device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # gather device model = BertForSequenceClassification.from_pretrained('GleghornLab/SYNTERACT', attn_implementation='sdpa').device.eval() # load model tokenizer = BertTokenizer.from_pretrained('GleghornLab/SYNTERACT') # load tokenizer sequence_a = 'MEKSCSIGNGREQYGWGHGEQCGTQFLECVYRNASMYSVLGDLITYVVFLGATCYAILFGFRLLLSCVRIVLKVVIALFVIRLLLALGSVDITSVSYSG' # Uniprot A1Z8T3 sequence_b = 'MRLTLLALIGVLCLACAYALDDSENNDQVVGLLDVADQGANHANDGAREARQLGGWGGGWGGRGGWGGRGGWGGRGGWGGRGGWGGGWGGRGGWGGRGGGWYGR' # Uniprot A1Z8H0 sequence_a = ' '.join(list(re.sub(r'[UZOB]', 'X', sequence_a))) # need spaces inbetween amino acids sequence_b = ' '.join(list(re.sub(r'[UZOB]', 'X', sequence_b))) # replace rare amino acids with X example = sequence_a + ' [SEP] ' + sequence_b # add SEP token example = tokenizer(example, return_tensors='pt', padding=False).to(device) # tokenize example with torch.no_grad(): logits = model(**example).logits.detach().cpu() # get logits from model probability = F.softmax(logits, dim=-1) # use softmax to get "confidence" in the prediction prediction = probability.argmax(dim=-1) # 0 for no interaction, 1 for interaction ``` ## Intended use and limitations We define a protein-protein interaction as physical contact that mediates chemical or conformational change, especially with non-generic function. However, due to SYNTERACT's propensity to predict false positives, we believe that it identifies plausible conformational changes caused by interactions without relevance to function. ## Our lab The [Gleghorn lab](https://www.gleghornlab.com/) is an interdisciplinary research group at the University of Delaware that focuses on solving translational problems with our expertise in engineering, biology, and chemistry. We develop inexpensive and reliable tools to study organ development, maternal-fetal health, and drug delivery. Recently we have begun exploration into protein language models and strive to make protein design and annotation accessible. ## Please cite ``` @article {Hallee_ppi_2023, author = {Logan Hallee and Jason P. Gleghorn}, title = {Protein-Protein Interaction Prediction is Achievable with Large Language Models}, year = {2023}, doi = {10.1101/2023.06.07.544109}, publisher = {Cold Spring Harbor Laboratory}, journal = {bioRxiv} } ``` ## A simple inference script ```python import torch import re import argparse import pandas as pd from transformers import BertForSequenceClassification, BertTokenizer from torch.utils.data import Dataset, DataLoader from typing import List, Tuple, Dict from tqdm.auto import tqdm class PairDataset(Dataset): def __init__(self, sequences_a: List[str], sequences_b: List[str]): self.sequences_a = sequences_a self.sequences_b = sequences_b def __len__(self): return len(self.sequences_a) def __getitem__(self, idx: int) -> Tuple[str, str]: return self.sequences_a[idx], self.sequences_b[idx] class PairCollator: def __init__(self, tokenizer, max_length=1024): self.tokenizer = tokenizer self.max_length = max_length def sanitize_seq(self, seq: str) -> str: seq = ' '.join(list(re.sub(r'[UZOB]', 'X', seq))) return seq def __call__(self, batch: List[Tuple[str, str]]) -> Dict[str, torch.Tensor]: seqs_a, seqs_b, = zip(*batch) seqs = [] for a, b in zip(seqs_a, seqs_b): seq = self.sanitize_seq(a) + ' [SEP] ' + self.sanitize_seq(b) seqs.append(seq) seqs = self.tokenizer(seqs, padding='longest', truncation=True, max_length=self.max_length, return_tensors='pt') return { 'input_ids': seqs['input_ids'], 'attention_mask': seqs['attention_mask'], } def main(args): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f"Using device: {device}") print(f"Loading model from {args.model_path}") model = BertForSequenceClassification.from_pretrained(args.model_path, attn_implementation="sdpa").eval().to(device) # When using PyTorch >= 2.5.1 on a linux machine, spda attention will greatly speed up inference tokenizer = BertTokenizer.from_pretrained(args.model_path) print(f"Tokenizer loaded") """ Load your data into two lists of sequences, where you want the PPI for each pair sequences_a[i], sequences_b[i] We recommend trimmed sequence pairs that sum over 1022 tokens (for the 1024 max length limit of SYNTERACT) We also recommend sorting the sequences by length in descending order, as this will speed up inference by reducing padding Example: from datasets import load_dataset data = load_dataset('Synthyra/NEGATOME', split='combined') # Filter out examples where the total length exceeds 1022 data = data.filter(lambda x: len(x['SeqA']) + len(x['SeqB']) <= 1022) # Add a new column 'total_length' that is the sum of lengths of SeqA and SeqB data = data.map(lambda x: {"total_length": len(x['SeqA']) + len(x['SeqB'])}) # Sort the dataset by 'total_length' in descending order (longest sequences first) data = data.sort("total_length", reverse=True) # Now retrieve the sorted sequences sequences_a = data['SeqA'] sequences_b = data['SeqB'] """ print("Loading data...") sequences_a = [] sequences_b = [] print("Creating torch dataset...") pair_dataset = PairDataset(sequences_a, sequences_b) pair_collator = PairCollator(tokenizer, max_length=1024) data_loader = DataLoader(pair_dataset, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=pair_collator) all_seqs_a = [] all_seqs_b = [] all_probs = [] all_preds = [] print("Starting inference...") with torch.no_grad(): for i, batch in enumerate(tqdm(data_loader, total=len(data_loader), desc="Batches processed")): # Because sequences are sorted, the initial estimate for time will be much longer than the actual time it will take input_ids = batch['input_ids'].to(device) attention_mask = batch['attention_mask'].to(device) logits = model(input_ids, attention_mask=attention_mask).logits.detach().cpu() prob_of_interaction = torch.softmax(logits, dim=1)[:, 1] # can do 1 - this for no interaction prob pred = torch.argmax(logits, dim=1) # Store results batch_start = i * args.batch_size batch_end = min((i + 1) * args.batch_size, len(sequences_a)) all_seqs_a.extend(sequences_a[batch_start:batch_end]) all_seqs_b.extend(sequences_b[batch_start:batch_end]) all_probs.extend(prob_of_interaction.tolist()) all_preds.extend(pred.tolist()) # round to 5 decimal places all_probs = [round(prob, 5) for prob in all_probs] # Create dataframe and save to CSV results_df = pd.DataFrame({ 'sequence_a': all_seqs_a, 'sequence_b': all_seqs_b, 'probabilities': all_probs, 'prediction': all_preds }) print(f"Saving results to {args.save_path}") results_df.to_csv(args.save_path, index=False) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str, default='GleghornLab/SYNTERACT') parser.add_argument('--save_path', type=str, default='ppi_predictions.csv') parser.add_argument('--batch_size', type=int, default=2) parser.add_argument('--num_workers', type=int, default=0) # can increase to use multiprocessing for dataloader, 4 is a good value usually args = parser.parse_args() main(args) ```