File size: 2,561 Bytes
46ee7e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
base_model: google/pegasus-multi_news
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: finetuned_pegasus_custom
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned_pegasus_custom

This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5792
- Rouge1: 43.3499
- Rouge2: 19.473
- Rougel: 28.3372
- Rougelsum: 39.6698
- Gen Len: 167.2593

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| No log        | 0.98  | 31   | 1.6733          | 45.2908 | 20.6545 | 28.8174 | 41.1913   | 157.2593 |
| No log        | 2.0   | 63   | 1.6448          | 45.8258 | 20.4208 | 29.3649 | 41.4304   | 164.7778 |
| No log        | 2.98  | 94   | 1.6308          | 45.6111 | 20.1988 | 28.7912 | 41.5061   | 157.8519 |
| No log        | 4.0   | 126  | 1.6105          | 45.2388 | 20.9335 | 28.8736 | 41.3696   | 160.6667 |
| No log        | 4.98  | 157  | 1.6009          | 44.84   | 20.5064 | 29.3276 | 40.9796   | 154.0741 |
| No log        | 6.0   | 189  | 1.5903          | 44.3777 | 19.987  | 29.5859 | 40.7764   | 163.1111 |
| No log        | 6.98  | 220  | 1.5844          | 44.3786 | 20.2566 | 29.1194 | 40.9269   | 160.1111 |
| No log        | 8.0   | 252  | 1.5821          | 43.3413 | 19.3    | 28.3204 | 39.619    | 153.6667 |
| No log        | 8.98  | 283  | 1.5796          | 42.9684 | 18.9515 | 27.909  | 39.166    | 162.1852 |
| No log        | 9.84  | 310  | 1.5792          | 43.3499 | 19.473  | 28.3372 | 39.6698   | 167.2593 |


### Framework versions

- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1