--- base_model: google/pegasus-xsum tags: - generated_from_trainer metrics: - rouge - precision - recall - f1 model-index: - name: LLM_Teached_Pegasus_50k results: [] --- # LLM_Teached_Pegasus_50k This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6991 - Rouge1: 0.4572 - Rouge2: 0.2103 - Rougel: 0.3743 - Rougelsum: 0.3742 - Gen Len: 26.3378 - Precision: 0.909 - Recall: 0.9067 - F1: 0.9076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | F1 | Gen Len | Validation Loss | Precision | Recall | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:------:|:-------:|:---------------:|:---------:|:------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 390 | 0.9034 | 26.2967 | 1.8258 | 0.9049 | 0.9023 | 0.4338 | 0.1906 | 0.3496 | 0.3498 | | 2.1621 | 2.0 | 781 | 0.9054 | 26.2727 | 1.7537 | 0.9068 | 0.9044 | 0.4449 | 0.2005 | 0.3633 | 0.3633 | | 1.8794 | 3.0 | 1172 | 0.9066 | 26.4345 | 1.7268 | 0.9078 | 0.9058 | 0.4518 | 0.2061 | 0.3696 | 0.3695 | | 1.8271 | 4.0 | 1560 | 1.7157 | 0.4539 | 0.2075 | 0.3716 | 0.3714 | 26.3971| 0.9082 | 0.906 | 0.9069 | | 1.8271 | 5.0 | 1951 | 1.7033 | 0.4561 | 0.2098 | 0.3735 | 0.3734 | 26.3015| 0.9087 | 0.9065 | 0.9074 | | 1.8067 | 5.99 | 2340 | 1.6991 | 0.4572 | 0.2103 | 0.3743 | 0.3742 | 26.3378| 0.909 | 0.9067 | 0.9076 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.15.0