--- library_name: transformers language: - ur license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - vfsicoli/common_voice_19_0 metrics: - wer model-index: - name: Whisper Medium Ur - Muhammad Abdullah on Common Voice 19 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 19.0 type: vfsicoli/common_voice_19_0 config: ur split: test args: 'config: ur, split: test' metrics: - name: Wer type: wer value: 28.99725366735883 --- # Whisper Medium Ur - Muhammad Abdullah on Common Voice 19 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 19.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4106 - Wer: 28.9973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 60 - training_steps: 600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3223 | 0.6682 | 300 | 0.4224 | 27.9903 | | 0.1392 | 1.3363 | 600 | 0.4106 | 28.9973 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0