File size: 30,392 Bytes
f01c2b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 |
# modeling_internvideo2.py
import logging
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel
from transformers.utils import logging as hf_logging
from torch.utils.checkpoint import checkpoint # Correct
from functools import partial
from .configuration_internvideo2 import InternVideo2Config # Import the configuration
try:
from einops import rearrange
except ImportError:
raise ImportError("Please install einops to use this model.")
try:
from timm.models.layers import DropPath, to_2tuple
except ImportError:
raise ImportError("Please install timm to use this model.")
logger = hf_logging.get_logger(__name__)
# Position embedding functions
def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False):
assert embed_dim % 4 == 0
embed_dim_spatial = embed_dim // 4 * 3
embed_dim_temporal = embed_dim // 4
# Spatial
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # W first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid)
# Temporal
grid_t = np.arange(t_size, dtype=np.float32)
pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t)
# Combine spatial and temporal embeddings
pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
pos_embed_temporal = np.repeat(pos_embed_temporal, grid_size**2, axis=1)
pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
pos_embed_spatial = np.repeat(pos_embed_spatial, t_size, axis=0)
pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)
pos_embed = pos_embed.reshape([-1, embed_dim])
if cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])
emb = np.concatenate([emb_h, emb_w], axis=1)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.0
omega = 1.0 / (10000 ** omega)
pos = pos.reshape(-1)
out = np.einsum('m,d->md', pos, omega)
emb_sin = np.sin(out)
emb_cos = np.cos(out)
emb = np.concatenate([emb_sin, emb_cos], axis=1)
return emb
# Define necessary classes: CrossAttention, AttentiveBlock, AttentionPoolingBlock, RMSNorm, LayerScale, Attention, Mlp, Block, PatchEmbed, Linear_Decoder
class CrossAttention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
attn_head_dim=None,
out_dim=None,
):
super().__init__()
if out_dim is None:
out_dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim ** -0.5
assert all_head_dim == dim
self.q = nn.Linear(dim, all_head_dim, bias=False)
self.k = nn.Linear(dim, all_head_dim, bias=False)
self.v = nn.Linear(dim, all_head_dim, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.k_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, out_dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, k=None, v=None):
B, N, C = x.shape
N_k = k.shape[1]
N_v = v.shape[1]
q_bias, k_bias, v_bias = None, None, None
if self.q_bias is not None:
q_bias = self.q_bias
k_bias = self.k_bias
v_bias = self.v_bias
q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
q = (
q.reshape(B, N, 1, self.num_heads, -1)
.permute(2, 0, 3, 1, 4)
.squeeze(0)
) # (B, N_head, N_q, dim)
k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
k = (
k.reshape(B, N_k, 1, self.num_heads, -1)
.permute(2, 0, 3, 1, 4)
.squeeze(0)
)
v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
v = (
v.reshape(B, N_v, 1, self.num_heads, -1)
.permute(2, 0, 3, 1, 4)
.squeeze(0)
)
q = q * self.scale
attn = q @ k.transpose(-2, -1) # (B, N_head, N_q, N_k)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class AttentiveBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
norm_layer=nn.LayerNorm,
attn_head_dim=None,
out_dim=None,
):
super().__init__()
self.norm1_q = norm_layer(dim)
self.norm1_k = norm_layer(dim)
self.norm1_v = norm_layer(dim)
self.cross_attn = CrossAttention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
attn_head_dim=attn_head_dim,
out_dim=out_dim,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(
self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None
):
x_q = self.norm1_q(x_q + pos_q)
x_k = self.norm1_k(x_kv + pos_k)
x_v = self.norm1_v(x_kv)
x = self.cross_attn(x_q, k=x_k, v=x_v)
return x
class AttentionPoolingBlock(AttentiveBlock):
def forward(self, x):
x_q = x.mean(1, keepdim=True)
x_kv, pos_q, pos_k = x, 0, 0
x = super().forward(
x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None
)
x = x.squeeze(1)
return x
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(
variance + self.variance_epsilon
)
return self.weight * hidden_states.to(input_dtype)
class LayerScale(nn.Module):
def __init__(
self, dim, init_values=1e-5, inplace=False, force_fp32=False
):
super().__init__()
self.inplace = inplace
self.weight = nn.Parameter(init_values * torch.ones(dim))
self.force_fp32 = force_fp32
@torch.cuda.amp.autocast(enabled=False)
def forward(self, x):
if self.force_fp32:
output_type = x.dtype
out = (
x.float().mul_(self.weight.float())
if self.inplace
else x.float() * self.weight.float()
)
return out.to(dtype=output_type)
else:
out = x.mul_(self.weight) if self.inplace else x * self.weight
return out
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
attn_drop=0.0,
proj_drop=0.0,
use_flash_attn=False,
causal=False,
norm_layer=nn.LayerNorm,
qk_normalization=False,
use_fused_rmsnorm=False,
):
super().__init__()
assert (
dim % num_heads == 0
), "dim should be divisible by num_heads"
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.use_flash_attn = use_flash_attn
if use_flash_attn:
self.causal = causal
try:
from flash_attn.flash_attention import FlashAttention
self.inner_attn = FlashAttention(
attention_dropout=attn_drop
)
except ImportError:
raise ImportError(
"Please install flash_attn to use flash attention."
)
self.qk_normalization = qk_normalization
self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity()
self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity()
self.use_fused_rmsnorm = use_fused_rmsnorm
def _naive_attn(self, x):
B, N, C = x.shape
# print(x.shape, torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv.unbind(
0
) # make torchscript happy (cannot use tensor as tuple)
if self.qk_normalization:
B_, H_, N_, D_ = q.shape
q = (
self.q_norm(q.transpose(1, 2).flatten(-2, -1))
.view(B_, N_, H_, D_)
.transpose(1, 2)
)
k = (
self.k_norm(k.transpose(1, 2).flatten(-2, -1))
.view(B_, N_, H_, D_)
.transpose(1, 2)
)
attn = (q * self.scale) @ k.transpose(-2, -1)
# attn = attn - attn.max(-1)[0].unsqueeze(-1) # in case of overflow for fp16
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
# print(torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def _flash_attn(
self, x, key_padding_mask=None, need_weights=False
):
qkv = self.qkv(x)
qkv = rearrange(
qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads
)
if self.qk_normalization:
q, k, v = qkv.unbind(2)
if self.use_fused_rmsnorm:
q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape)
k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape)
else:
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
qkv = torch.stack([q, k, v], dim=2)
context, _ = self.inner_attn(
qkv,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
causal=self.causal,
)
outs = self.proj(rearrange(context, "b s h d -> b s (h d)"))
outs = self.proj_drop(outs)
return outs
def forward(self, x):
x = (
self._naive_attn(x)
if not self.use_flash_attn
else self._flash_attn(x)
)
return x
class Mlp(nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
bias=True,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
bias = to_2tuple(bias)
drop_probs = to_2tuple(drop)
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0])
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
drop=0.0,
attn_drop=0.0,
init_values=None,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
use_flash_attn=False,
use_fused_mlp=False,
fused_mlp_heuristic=1,
with_cp=False,
qk_normalization=False,
layerscale_no_force_fp32=False,
use_fused_rmsnorm=False,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop,
use_flash_attn=use_flash_attn,
causal=False,
norm_layer=norm_layer,
qk_normalization=qk_normalization,
use_fused_rmsnorm=use_fused_rmsnorm,
)
self.ls1 = (
LayerScale(
dim,
init_values=init_values,
force_fp32=(not layerscale_no_force_fp32),
)
if init_values
else nn.Identity()
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path1 = (
DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
if use_fused_mlp:
try:
from flash_attn.modules.mlp import FusedMLP
except ImportError:
raise ImportError(
"Please install flash_attn to use fused MLP."
)
self.mlp = FusedMLP(
in_features=dim,
hidden_features=mlp_hidden_dim,
heuristic=fused_mlp_heuristic,
)
else:
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
self.ls2 = (
LayerScale(
dim,
init_values=init_values,
force_fp32=(not layerscale_no_force_fp32),
)
if init_values
else nn.Identity()
)
self.drop_path2 = (
DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
)
self.with_cp = with_cp
self.use_fused_rmsnorm = use_fused_rmsnorm
def forward(self, x, residual=None):
def _inner_forward(x, residual=None):
if self.use_fused_rmsnorm:
x, residual = self.norm1(x, residual)
x = self.drop_path1(self.ls1(self.attn(x)))
x, residual = self.norm2(x, residual)
x = self.drop_path2(self.ls2(self.mlp(x)))
return x, residual
else:
assert residual is None
x = x + self.drop_path1(
self.ls1(self.attn(self.norm1(x)))
)
x = x + self.drop_path2(
self.ls2(self.mlp(self.norm2(x)))
)
return x
if self.with_cp:
return checkpoint(_inner_forward, x, residual)
else:
return _inner_forward(x, residual=residual)
class PatchEmbed(nn.Module):
"""3D Image to Patch Embedding"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
num_frames=8,
tubelet_size=1,
norm_layer=None,
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (
num_frames // tubelet_size,
img_size[0] // patch_size[0],
img_size[1] // patch_size[1],
) # (T, H, W)
self.num_patches = (
self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
)
self.num_img_patches = self.grid_size[1] * self.grid_size[2]
self.proj = nn.Conv3d(
in_channels=in_chans,
out_channels=embed_dim,
kernel_size=(tubelet_size, patch_size[0], patch_size[1]),
stride=(tubelet_size, patch_size[0], patch_size[1]),
)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
x = self.proj(x)
x = (
x.flatten(3)
.permute(0, 2, 3, 1)
) # B x C x T x HW => B x T x HW x C
x = self.norm(x)
return x
class Linear_Decoder(nn.Module):
def __init__(self, in_channels=1408, out_channels=3200, norm_layer=nn.LayerNorm, clip_norm_type='l2'):
super().__init__()
self.clip_norm_type = clip_norm_type
logger.info(f'Normalization Type: {clip_norm_type}')
self.head = nn.Linear(in_channels, out_channels)
self.norm = norm_layer(out_channels)
def forward(self, x):
x = self.norm(self.head(x))
if self.clip_norm_type == 'l2':
x = x / x.norm(dim=-1, keepdim=True)
elif self.clip_norm_type == 'none':
pass
else:
raise NotImplementedError
return x
class InternVideo2Model(PreTrainedModel):
config_class = InternVideo2Config
base_model_prefix = "internvideo2"
def __init__(self, config: InternVideo2Config):
super().__init__(config)
in_chans = 3
drop_path_rate = 0.25
qk_normalization = config.qk_normalization
clip_embed_dim = config.clip_embed_dim
num_heads = config.num_heads
qkv_bias = config.qkv_bias
init_values = config.init_values
mlp_ratio = config.mlp_ratio
depth = config.depth
num_frames = config.num_frames
self.num_frames = num_frames
self.tubelet_size = config.tubelet_size
use_fused_mlp = config.use_fused_mlp
use_fused_rmsnorm = config.use_fused_rmsnorm
use_flash_attn = config.use_flash_attn
assert (
use_flash_attn
== use_fused_rmsnorm
== use_fused_mlp
), "use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent"
self.use_flash_attn = use_flash_attn
embed_dim = config.d_model
self.embed_dim = embed_dim
self.depth = depth
self.clip_norm_type = config.clip_norm_type
self.return_index = []
for i in range(config.clip_return_layer):
self.return_index.append(
depth - int(i * config.clip_student_return_interval) - 1
)
logger.info(f"Normalization Type: {config.clip_norm_type}")
logger.info(f"Student Return Index: {self.return_index}")
if use_fused_rmsnorm:
try:
from flash_attn.ops.rms_norm import DropoutAddRMSNorm
except ImportError:
raise ImportError(
"Please install flash_attn to use fused RMSNorm."
)
norm_layer_for_blocks = partial(
DropoutAddRMSNorm, eps=1e-6, prenorm=True
)
else:
norm_layer_for_blocks = partial(RMSNorm, eps=1e-6)
self.norm_layer_for_blocks = norm_layer_for_blocks
self.patch_embed = PatchEmbed(
config.img_size,
config.patch_size,
in_chans,
embed_dim,
num_frames=num_frames,
tubelet_size=self.tubelet_size,
)
num_patches = self.patch_embed.num_patches
num_img_patches = self.patch_embed.num_img_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.sep_pos_embed = False
self.sep_image_video_pos_embed = config.sep_image_video_pos_embed
if self.sep_pos_embed:
raise NotImplementedError
else:
if self.sep_image_video_pos_embed:
logger.info(
"Use joint position embedding, for image and video we use different pos_embed."
)
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dim)
)
self.img_pos_embed = nn.Parameter(
torch.zeros(1, num_img_patches + 1, embed_dim)
)
# for CLIP decoder
self.clip_pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dim)
)
self.clip_img_pos_embed = nn.Parameter(
torch.zeros(1, num_img_patches + 1, embed_dim)
)
else:
logger.info(
"Use joint position embedding, for image and video we use same pos_embed."
)
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dim)
)
self.clip_pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dim)
)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
# choose which layer to use checkpoint
with_cp_list = [False] * depth
if config.use_checkpoint:
for idx in range(depth):
if idx < config.checkpoint_num:
with_cp_list[idx] = True
logger.info(f"Droppath rate: {dpr}")
logger.info(f"Checkpoint list: {with_cp_list}")
self.blocks = nn.ModuleList(
[
Block(
embed_dim,
num_heads,
mlp_ratio,
qkv_bias=qkv_bias,
norm_layer=norm_layer_for_blocks,
drop_path=dpr[i],
init_values=init_values,
attn_drop=0.0,
use_flash_attn=use_flash_attn,
use_fused_mlp=use_fused_mlp,
fused_mlp_heuristic=1,
with_cp=with_cp_list[i],
qk_normalization=qk_normalization,
layerscale_no_force_fp32=False,
use_fused_rmsnorm=use_fused_rmsnorm,
)
for i in range(depth)
]
)
self.clip_projector = AttentionPoolingBlock(
dim=embed_dim,
num_heads=config.attn_pool_num_heads,
qkv_bias=True,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-5),
out_dim=clip_embed_dim,
)
# CLIP decoder
self.clip_decoder = nn.ModuleList(
[
Linear_Decoder(
in_channels=embed_dim,
out_channels=config.clip_teacher_embed_dim,
norm_layer=partial(nn.LayerNorm, eps=1e-5),
clip_norm_type=config.clip_norm_type,
)
for _ in range(config.clip_return_layer)
]
)
self.final_clip_decoder = nn.Identity()
if config.clip_teacher_final_dim > 0:
self.final_clip_decoder = Linear_Decoder(
in_channels=clip_embed_dim,
out_channels=config.clip_teacher_final_dim,
norm_layer=partial(nn.LayerNorm, eps=1e-5),
clip_norm_type=config.clip_norm_type,
)
# Removed initialization methods and code
@property
def dtype(self):
return self.patch_embed.proj.weight.dtype
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {
"pos_embed",
"pos_embed_spatial",
"pos_embed_temporal",
"pos_embed_cls",
"img_pos_embed",
"cls_token",
"clip_pos_embed",
"clip_pos_embed_spatial",
"clip_pos_embed_temporal",
"clip_pos_embed_cls",
"clip_img_pos_embed",
}
def forward(
self,
x,
mask=None,
use_image=False,
x_vis_return_idx=-1,
x_vis_only=False,
):
x = self.patch_embed(x.type(self.dtype))
B, T, L, C = x.shape
x = x.view([B, T * L, C])
# Append cls token
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# Add positional embeddings
if self.sep_pos_embed:
raise NotImplementedError
else:
if use_image:
if self.sep_image_video_pos_embed:
pos_embed = self.img_pos_embed
else:
cls_pos_embed = self.pos_embed[:, 0:1, :]
img_pos_embed = (
self.pos_embed[:, 1:, :]
.view(
1,
self.num_frames,
self.patch_embed.num_patches // self.num_frames,
self.embed_dim,
)
.mean(dim=1)
)
pos_embed = torch.cat(
[cls_pos_embed, img_pos_embed], dim=1
)
else:
pos_embed = self.pos_embed
x = x + pos_embed
# Mask tokens
if mask is not None:
x = x[~mask].reshape(B, -1, C)
else:
x = x.reshape(B, -1, C)
residual = None
x_clip = []
for idx, blk in enumerate(self.blocks):
if isinstance(x, tuple) and len(x) == 2:
x, residual = x
x = blk(x, residual=residual)
# Return intermediate features
if idx in self.return_index:
if isinstance(x, tuple) and len(x) == 2:
tmp_x, tmp_residual = x
if residual is not None:
x_clip.append(tmp_x + tmp_residual)
else:
x_clip.append(x)
if idx == (self.depth + x_vis_return_idx):
break
if isinstance(x, tuple) and len(x) == 2:
x, residual = x
if residual is not None:
x = x + residual
x_vis = x
if x_vis_only:
return x_vis
x_pool_vis = self.clip_projector(x_vis)
x_align = self.final_clip_decoder(x_pool_vis)
# Align CLIP
x_clip = torch.stack(x_clip)
K, B, _, C_CLIP = x_clip.shape
# Add positional embeddings
if self.sep_pos_embed:
raise NotImplementedError
else:
if use_image:
if self.sep_image_video_pos_embed:
clip_pos_embed = self.clip_img_pos_embed
else:
clip_cls_pos_embed = self.clip_pos_embed[:, 0:1, :]
clip_img_pos_embed = (
self.clip_pos_embed[:, 1:, :]
.view(
1,
self.num_frames,
self.patch_embed.num_patches // self.num_frames,
self.embed_dim,
)
.mean(dim=1)
)
clip_pos_embed = torch.cat(
[clip_cls_pos_embed, clip_img_pos_embed], dim=1
)
else:
clip_pos_embed = self.clip_pos_embed
clip_pos_embed = clip_pos_embed.repeat(B, 1, 1)
if mask is not None:
x_clip = x_clip + clip_pos_embed[~mask].view(
B, -1, C_CLIP
).unsqueeze(0).repeat(K, 1, 1, 1)
else:
x_clip = x_clip + clip_pos_embed.view(B, -1, C_CLIP).unsqueeze(
0
).repeat(K, 1, 1, 1)
# CLIP decoder
x_clip_align = []
for idx, clip_decoder in enumerate(self.clip_decoder):
x_clip_align.append(clip_decoder(x_clip[idx]))
x_clip_align = torch.stack(x_clip_align)
return x_vis, x_pool_vis, x_clip_align, x_align
def load_pretrained_weights(self):
if self.config.pretrained is not None:
logger.info(f"Loading pretrained weights from {self.config.pretrained}")
state_dict = torch.load(self.config.pretrained, map_location='cpu')
# Rename 'ls1.weight' to 'ls1.weight' and 'ls2.weight' to 'ls2.weight'
new_state_dict = {}
for key, value in state_dict.items():
if key.endswith('.ls1.weight'):
new_key = key.replace('.ls1.weight', '.ls1.weight')
new_state_dict[new_key] = value
elif key.endswith('.ls2.weight'):
new_key = key.replace('.ls2.weight', '.ls2.weight')
new_state_dict[new_key] = value
else:
new_state_dict[key] = value
# Load the adjusted state_dict
message = self.load_state_dict(new_state_dict, strict=False)
logger.info(message)
else:
logger.info("No pretrained weights provided.") |