File size: 30,392 Bytes
f01c2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
# modeling_internvideo2.py

import logging
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from transformers import PreTrainedModel
from transformers.utils import logging as hf_logging

from torch.utils.checkpoint import checkpoint  # Correct

from functools import partial

from .configuration_internvideo2 import InternVideo2Config  # Import the configuration

try:
    from einops import rearrange
except ImportError:
    raise ImportError("Please install einops to use this model.")

try:
    from timm.models.layers import DropPath, to_2tuple
except ImportError:
    raise ImportError("Please install timm to use this model.")

logger = hf_logging.get_logger(__name__)

# Position embedding functions
def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False):
    assert embed_dim % 4 == 0
    embed_dim_spatial = embed_dim // 4 * 3
    embed_dim_temporal = embed_dim // 4

    # Spatial
    grid_h = np.arange(grid_size, dtype=np.float32)
    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # W first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid)

    # Temporal
    grid_t = np.arange(t_size, dtype=np.float32)
    pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t)

    # Combine spatial and temporal embeddings
    pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
    pos_embed_temporal = np.repeat(pos_embed_temporal, grid_size**2, axis=1)
    pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
    pos_embed_spatial = np.repeat(pos_embed_spatial, t_size, axis=0)

    pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)
    pos_embed = pos_embed.reshape([-1, embed_dim])

    if cls_token:
        pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
    return pos_embed

def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])

    emb = np.concatenate([emb_h, emb_w], axis=1)
    return emb

def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.0
    omega = 1.0 / (10000 ** omega)

    pos = pos.reshape(-1)
    out = np.einsum('m,d->md', pos, omega)

    emb_sin = np.sin(out)
    emb_cos = np.cos(out)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)
    return emb

# Define necessary classes: CrossAttention, AttentiveBlock, AttentionPoolingBlock, RMSNorm, LayerScale, Attention, Mlp, Block, PatchEmbed, Linear_Decoder


class CrossAttention(nn.Module):
    def __init__(
        self,
        dim,
        num_heads=8,
        qkv_bias=False,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
        attn_head_dim=None,
        out_dim=None,
    ):
        super().__init__()
        if out_dim is None:
            out_dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim ** -0.5
        assert all_head_dim == dim

        self.q = nn.Linear(dim, all_head_dim, bias=False)
        self.k = nn.Linear(dim, all_head_dim, bias=False)
        self.v = nn.Linear(dim, all_head_dim, bias=False)

        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        else:
            self.q_bias = None
            self.k_bias = None
            self.v_bias = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, out_dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, k=None, v=None):
        B, N, C = x.shape
        N_k = k.shape[1]
        N_v = v.shape[1]

        q_bias, k_bias, v_bias = None, None, None
        if self.q_bias is not None:
            q_bias = self.q_bias
            k_bias = self.k_bias
            v_bias = self.v_bias

        q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
        q = (
            q.reshape(B, N, 1, self.num_heads, -1)
            .permute(2, 0, 3, 1, 4)
            .squeeze(0)
        )  # (B, N_head, N_q, dim)

        k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
        k = (
            k.reshape(B, N_k, 1, self.num_heads, -1)
            .permute(2, 0, 3, 1, 4)
            .squeeze(0)
        )

        v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
        v = (
            v.reshape(B, N_v, 1, self.num_heads, -1)
            .permute(2, 0, 3, 1, 4)
            .squeeze(0)
        )

        q = q * self.scale
        attn = q @ k.transpose(-2, -1)  # (B, N_head, N_q, N_k)

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class AttentiveBlock(nn.Module):
    def __init__(
        self,
        dim,
        num_heads,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        norm_layer=nn.LayerNorm,
        attn_head_dim=None,
        out_dim=None,
    ):
        super().__init__()

        self.norm1_q = norm_layer(dim)
        self.norm1_k = norm_layer(dim)
        self.norm1_v = norm_layer(dim)
        self.cross_attn = CrossAttention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
            attn_head_dim=attn_head_dim,
            out_dim=out_dim,
        )

        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(
        self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None
    ):
        x_q = self.norm1_q(x_q + pos_q)
        x_k = self.norm1_k(x_kv + pos_k)
        x_v = self.norm1_v(x_kv)
        x = self.cross_attn(x_q, k=x_k, v=x_v)

        return x


class AttentionPoolingBlock(AttentiveBlock):
    def forward(self, x):
        x_q = x.mean(1, keepdim=True)
        x_kv, pos_q, pos_k = x, 0, 0
        x = super().forward(
            x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None
        )
        x = x.squeeze(1)
        return x


class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(
            variance + self.variance_epsilon
        )
        return self.weight * hidden_states.to(input_dtype)


class LayerScale(nn.Module):
    def __init__(
        self, dim, init_values=1e-5, inplace=False, force_fp32=False
    ):
        super().__init__()
        self.inplace = inplace
        self.weight = nn.Parameter(init_values * torch.ones(dim))
        self.force_fp32 = force_fp32

    @torch.cuda.amp.autocast(enabled=False)
    def forward(self, x):
        if self.force_fp32:
            output_type = x.dtype
            out = (
                x.float().mul_(self.weight.float())
                if self.inplace
                else x.float() * self.weight.float()
            )
            return out.to(dtype=output_type)
        else:
            out = x.mul_(self.weight) if self.inplace else x * self.weight
            return out


class Attention(nn.Module):
    def __init__(
        self,
        dim,
        num_heads=8,
        qkv_bias=False,
        attn_drop=0.0,
        proj_drop=0.0,
        use_flash_attn=False,
        causal=False,
        norm_layer=nn.LayerNorm,
        qk_normalization=False,
        use_fused_rmsnorm=False,
    ):
        super().__init__()
        assert (
            dim % num_heads == 0
        ), "dim should be divisible by num_heads"
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5
        
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.use_flash_attn = use_flash_attn
        if use_flash_attn:
            self.causal = causal
            try:
                from flash_attn.flash_attention import FlashAttention

                self.inner_attn = FlashAttention(
                    attention_dropout=attn_drop
                )
            except ImportError:
                raise ImportError(
                    "Please install flash_attn to use flash attention."
                )

        self.qk_normalization = qk_normalization
        self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity()
        self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity()
        self.use_fused_rmsnorm = use_fused_rmsnorm

    def _naive_attn(self, x):
        B, N, C = x.shape
        # print(x.shape, torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
        qkv = (
            self.qkv(x)
            .reshape(B, N, 3, self.num_heads, C // self.num_heads)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = qkv.unbind(
            0
        )  # make torchscript happy (cannot use tensor as tuple)

        if self.qk_normalization:
            B_, H_, N_, D_ = q.shape
            q = (
                self.q_norm(q.transpose(1, 2).flatten(-2, -1))
                .view(B_, N_, H_, D_)
                .transpose(1, 2)
            )
            k = (
                self.k_norm(k.transpose(1, 2).flatten(-2, -1))
                .view(B_, N_, H_, D_)
                .transpose(1, 2)
            )

        attn = (q * self.scale) @ k.transpose(-2, -1)
        # attn = attn - attn.max(-1)[0].unsqueeze(-1)  # in case of overflow for fp16
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        # print(torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def _flash_attn(
        self, x, key_padding_mask=None, need_weights=False
    ):
        qkv = self.qkv(x)
        qkv = rearrange(
            qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads
        )

        if self.qk_normalization:
            q, k, v = qkv.unbind(2)
            if self.use_fused_rmsnorm:
                q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape)
                k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape)
            else:
                q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
                k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
            qkv = torch.stack([q, k, v], dim=2)

        context, _ = self.inner_attn(
            qkv,
            key_padding_mask=key_padding_mask,
            need_weights=need_weights,
            causal=self.causal,
        )
        outs = self.proj(rearrange(context, "b s h d -> b s (h d)"))
        outs = self.proj_drop(outs)
        return outs

    def forward(self, x):
        x = (
            self._naive_attn(x)
            if not self.use_flash_attn
            else self._flash_attn(x)
        )
        return x


class Mlp(nn.Module):
    """MLP as used in Vision Transformer, MLP-Mixer and related networks"""

    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        bias=True,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)
        drop_probs = to_2tuple(drop)

        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
        self.drop2 = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x


class Block(nn.Module):
    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        drop=0.0,
        attn_drop=0.0,
        init_values=None,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        use_flash_attn=False,
        use_fused_mlp=False,
        fused_mlp_heuristic=1,
        with_cp=False,
        qk_normalization=False,
        layerscale_no_force_fp32=False,
        use_fused_rmsnorm=False,
    ):
        super().__init__()

        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=drop,
            use_flash_attn=use_flash_attn,
            causal=False,
            norm_layer=norm_layer,
            qk_normalization=qk_normalization,
            use_fused_rmsnorm=use_fused_rmsnorm,
        )
        self.ls1 = (
            LayerScale(
                dim,
                init_values=init_values,
                force_fp32=(not layerscale_no_force_fp32),
            )
            if init_values
            else nn.Identity()
        )
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path1 = (
            DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        )

        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        if use_fused_mlp:
            try:
                from flash_attn.modules.mlp import FusedMLP
            except ImportError:
                raise ImportError(
                    "Please install flash_attn to use fused MLP."
                )
            self.mlp = FusedMLP(
                in_features=dim,
                hidden_features=mlp_hidden_dim,
                heuristic=fused_mlp_heuristic,
            )
        else:
            self.mlp = Mlp(
                in_features=dim,
                hidden_features=mlp_hidden_dim,
                act_layer=act_layer,
                drop=drop,
            )
        self.ls2 = (
            LayerScale(
                dim,
                init_values=init_values,
                force_fp32=(not layerscale_no_force_fp32),
            )
            if init_values
            else nn.Identity()
        )
        self.drop_path2 = (
            DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        )

        self.with_cp = with_cp
        self.use_fused_rmsnorm = use_fused_rmsnorm

    def forward(self, x, residual=None):
        def _inner_forward(x, residual=None):
            if self.use_fused_rmsnorm:
                x, residual = self.norm1(x, residual)
                x = self.drop_path1(self.ls1(self.attn(x)))
                x, residual = self.norm2(x, residual)
                x = self.drop_path2(self.ls2(self.mlp(x)))
                return x, residual
            else:
                assert residual is None
                x = x + self.drop_path1(
                    self.ls1(self.attn(self.norm1(x)))
                )
                x = x + self.drop_path2(
                    self.ls2(self.mlp(self.norm2(x)))
                )
                return x

        if self.with_cp:
            return checkpoint(_inner_forward, x, residual)
        else:
            return _inner_forward(x, residual=residual)


class PatchEmbed(nn.Module):
    """3D Image to Patch Embedding"""

    def __init__(
        self,
        img_size=224,
        patch_size=16,
        in_chans=3,
        embed_dim=768,
        num_frames=8,
        tubelet_size=1,
        norm_layer=None,
    ):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (
            num_frames // tubelet_size,
            img_size[0] // patch_size[0],
            img_size[1] // patch_size[1],
        )  # (T, H, W)
        self.num_patches = (
            self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
        )
        self.num_img_patches = self.grid_size[1] * self.grid_size[2]

        self.proj = nn.Conv3d(
            in_channels=in_chans,
            out_channels=embed_dim,
            kernel_size=(tubelet_size, patch_size[0], patch_size[1]),
            stride=(tubelet_size, patch_size[0], patch_size[1]),
        )
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        x = self.proj(x)
        x = (
            x.flatten(3)
            .permute(0, 2, 3, 1)
        )  # B x C x T x HW => B x T x HW x C
        x = self.norm(x)
        return x



class Linear_Decoder(nn.Module):
    def __init__(self, in_channels=1408, out_channels=3200, norm_layer=nn.LayerNorm, clip_norm_type='l2'):
        super().__init__()
        self.clip_norm_type = clip_norm_type
        logger.info(f'Normalization Type: {clip_norm_type}')

        self.head = nn.Linear(in_channels, out_channels)
        self.norm = norm_layer(out_channels)

    def forward(self, x):
        x = self.norm(self.head(x))

        if self.clip_norm_type == 'l2':
            x = x / x.norm(dim=-1, keepdim=True)
        elif self.clip_norm_type == 'none':
            pass
        else:
            raise NotImplementedError

        return x

class InternVideo2Model(PreTrainedModel):
    config_class = InternVideo2Config
    base_model_prefix = "internvideo2"

    def __init__(self, config: InternVideo2Config):
        super().__init__(config)

        in_chans = 3
        drop_path_rate = 0.25
        qk_normalization = config.qk_normalization
        clip_embed_dim = config.clip_embed_dim
        num_heads = config.num_heads
        qkv_bias = config.qkv_bias
        init_values = config.init_values
        mlp_ratio = config.mlp_ratio
        depth = config.depth
        num_frames = config.num_frames
        self.num_frames = num_frames
        self.tubelet_size = config.tubelet_size
        use_fused_mlp = config.use_fused_mlp
        use_fused_rmsnorm = config.use_fused_rmsnorm
        use_flash_attn = config.use_flash_attn
        assert (
            use_flash_attn
            == use_fused_rmsnorm
            == use_fused_mlp
        ), "use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent"

        self.use_flash_attn = use_flash_attn
        embed_dim = config.d_model
        self.embed_dim = embed_dim

        self.depth = depth
        self.clip_norm_type = config.clip_norm_type
        self.return_index = []
        for i in range(config.clip_return_layer):
            self.return_index.append(
                depth - int(i * config.clip_student_return_interval) - 1
            )
        logger.info(f"Normalization Type: {config.clip_norm_type}")
        logger.info(f"Student Return Index: {self.return_index}")

        if use_fused_rmsnorm:
            try:
                from flash_attn.ops.rms_norm import DropoutAddRMSNorm
            except ImportError:
                raise ImportError(
                    "Please install flash_attn to use fused RMSNorm."
                )
            norm_layer_for_blocks = partial(
                DropoutAddRMSNorm, eps=1e-6, prenorm=True
            )
        else:
            norm_layer_for_blocks = partial(RMSNorm, eps=1e-6)
        self.norm_layer_for_blocks = norm_layer_for_blocks
        self.patch_embed = PatchEmbed(
            config.img_size,
            config.patch_size,
            in_chans,
            embed_dim,
            num_frames=num_frames,
            tubelet_size=self.tubelet_size,
        )
        num_patches = self.patch_embed.num_patches
        num_img_patches = self.patch_embed.num_img_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))

        self.sep_pos_embed = False
        self.sep_image_video_pos_embed = config.sep_image_video_pos_embed
        if self.sep_pos_embed:
            raise NotImplementedError
        else:
            if self.sep_image_video_pos_embed:
                logger.info(
                    "Use joint position embedding, for image and video we use different pos_embed."
                )
                self.pos_embed = nn.Parameter(
                    torch.zeros(1, num_patches + 1, embed_dim)
                )
                self.img_pos_embed = nn.Parameter(
                    torch.zeros(1, num_img_patches + 1, embed_dim)
                )
                # for CLIP decoder
                self.clip_pos_embed = nn.Parameter(
                    torch.zeros(1, num_patches + 1, embed_dim)
                )
                self.clip_img_pos_embed = nn.Parameter(
                    torch.zeros(1, num_img_patches + 1, embed_dim)
                )
            else:
                logger.info(
                    "Use joint position embedding, for image and video we use same pos_embed."
                )
                self.pos_embed = nn.Parameter(
                    torch.zeros(1, num_patches + 1, embed_dim)
                )
                self.clip_pos_embed = nn.Parameter(
                    torch.zeros(1, num_patches + 1, embed_dim)
                )
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
        # choose which layer to use checkpoint
        with_cp_list = [False] * depth
        if config.use_checkpoint:
            for idx in range(depth):
                if idx < config.checkpoint_num:
                    with_cp_list[idx] = True
        logger.info(f"Droppath rate: {dpr}")
        logger.info(f"Checkpoint list: {with_cp_list}")

        self.blocks = nn.ModuleList(
            [
                Block(
                    embed_dim,
                    num_heads,
                    mlp_ratio,
                    qkv_bias=qkv_bias,
                    norm_layer=norm_layer_for_blocks,
                    drop_path=dpr[i],
                    init_values=init_values,
                    attn_drop=0.0,
                    use_flash_attn=use_flash_attn,
                    use_fused_mlp=use_fused_mlp,
                    fused_mlp_heuristic=1,
                    with_cp=with_cp_list[i],
                    qk_normalization=qk_normalization,
                    layerscale_no_force_fp32=False,
                    use_fused_rmsnorm=use_fused_rmsnorm,
                )
                for i in range(depth)
            ]
        )
        self.clip_projector = AttentionPoolingBlock(
            dim=embed_dim,
            num_heads=config.attn_pool_num_heads,
            qkv_bias=True,
            qk_scale=None,
            drop=0.0,
            attn_drop=0.0,
            norm_layer=partial(nn.LayerNorm, eps=1e-5),
            out_dim=clip_embed_dim,
        )

        # CLIP decoder
        self.clip_decoder = nn.ModuleList(
            [
                Linear_Decoder(
                    in_channels=embed_dim,
                    out_channels=config.clip_teacher_embed_dim,
                    norm_layer=partial(nn.LayerNorm, eps=1e-5),
                    clip_norm_type=config.clip_norm_type,
                )
                for _ in range(config.clip_return_layer)
            ]
        )
        self.final_clip_decoder = nn.Identity()
        if config.clip_teacher_final_dim > 0:
            self.final_clip_decoder = Linear_Decoder(
                in_channels=clip_embed_dim,
                out_channels=config.clip_teacher_final_dim,
                norm_layer=partial(nn.LayerNorm, eps=1e-5),
                clip_norm_type=config.clip_norm_type,
            )

        # Removed initialization methods and code

    @property
    def dtype(self):
        return self.patch_embed.proj.weight.dtype

    def get_num_layers(self):
        return len(self.blocks)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {
            "pos_embed",
            "pos_embed_spatial",
            "pos_embed_temporal",
            "pos_embed_cls",
            "img_pos_embed",
            "cls_token",
            "clip_pos_embed",
            "clip_pos_embed_spatial",
            "clip_pos_embed_temporal",
            "clip_pos_embed_cls",
            "clip_img_pos_embed",
        }

    def forward(
        self,
        x,
        mask=None,
        use_image=False,
        x_vis_return_idx=-1,
        x_vis_only=False,
    ):
        x = self.patch_embed(x.type(self.dtype))
        B, T, L, C = x.shape
        x = x.view([B, T * L, C])

        # Append cls token
        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        # Add positional embeddings
        if self.sep_pos_embed:
            raise NotImplementedError
        else:
            if use_image:
                if self.sep_image_video_pos_embed:
                    pos_embed = self.img_pos_embed
                else:
                    cls_pos_embed = self.pos_embed[:, 0:1, :]
                    img_pos_embed = (
                        self.pos_embed[:, 1:, :]
                        .view(
                            1,
                            self.num_frames,
                            self.patch_embed.num_patches // self.num_frames,
                            self.embed_dim,
                        )
                        .mean(dim=1)
                    )
                    pos_embed = torch.cat(
                        [cls_pos_embed, img_pos_embed], dim=1
                    )
            else:
                pos_embed = self.pos_embed
        x = x + pos_embed

        # Mask tokens
        if mask is not None:
            x = x[~mask].reshape(B, -1, C)
        else:
            x = x.reshape(B, -1, C)

        residual = None
        x_clip = []
        for idx, blk in enumerate(self.blocks):
            if isinstance(x, tuple) and len(x) == 2:
                x, residual = x
            x = blk(x, residual=residual)
            # Return intermediate features
            if idx in self.return_index:
                if isinstance(x, tuple) and len(x) == 2:
                    tmp_x, tmp_residual = x
                    if residual is not None:
                        x_clip.append(tmp_x + tmp_residual)
                else:
                    x_clip.append(x)
            if idx == (self.depth + x_vis_return_idx):
                break

        if isinstance(x, tuple) and len(x) == 2:
            x, residual = x
            if residual is not None:
                x = x + residual

        x_vis = x
        if x_vis_only:
            return x_vis

        x_pool_vis = self.clip_projector(x_vis)
        x_align = self.final_clip_decoder(x_pool_vis)

        # Align CLIP
        x_clip = torch.stack(x_clip)
        K, B, _, C_CLIP = x_clip.shape
        # Add positional embeddings
        if self.sep_pos_embed:
            raise NotImplementedError
        else:
            if use_image:
                if self.sep_image_video_pos_embed:
                    clip_pos_embed = self.clip_img_pos_embed
                else:
                    clip_cls_pos_embed = self.clip_pos_embed[:, 0:1, :]
                    clip_img_pos_embed = (
                        self.clip_pos_embed[:, 1:, :]
                        .view(
                            1,
                            self.num_frames,
                            self.patch_embed.num_patches // self.num_frames,
                            self.embed_dim,
                        )
                        .mean(dim=1)
                    )
                    clip_pos_embed = torch.cat(
                        [clip_cls_pos_embed, clip_img_pos_embed], dim=1
                    )

            else:
                clip_pos_embed = self.clip_pos_embed

        clip_pos_embed = clip_pos_embed.repeat(B, 1, 1)
        if mask is not None:
            x_clip = x_clip + clip_pos_embed[~mask].view(
                B, -1, C_CLIP
            ).unsqueeze(0).repeat(K, 1, 1, 1)
        else:
            x_clip = x_clip + clip_pos_embed.view(B, -1, C_CLIP).unsqueeze(
                0
            ).repeat(K, 1, 1, 1)

        # CLIP decoder
        x_clip_align = []
        for idx, clip_decoder in enumerate(self.clip_decoder):
            x_clip_align.append(clip_decoder(x_clip[idx]))
        x_clip_align = torch.stack(x_clip_align)

        return x_vis, x_pool_vis, x_clip_align, x_align


    def load_pretrained_weights(self):
        if self.config.pretrained is not None:
            logger.info(f"Loading pretrained weights from {self.config.pretrained}")
            state_dict = torch.load(self.config.pretrained, map_location='cpu')
            
            # Rename 'ls1.weight' to 'ls1.weight' and 'ls2.weight' to 'ls2.weight'
            new_state_dict = {}
            for key, value in state_dict.items():
                if key.endswith('.ls1.weight'):
                    new_key = key.replace('.ls1.weight', '.ls1.weight')
                    new_state_dict[new_key] = value
                elif key.endswith('.ls2.weight'):
                    new_key = key.replace('.ls2.weight', '.ls2.weight')
                    new_state_dict[new_key] = value
                else:
                    new_state_dict[key] = value
            
            # Load the adjusted state_dict
            message = self.load_state_dict(new_state_dict, strict=False)
            logger.info(message)
        else:
            logger.info("No pretrained weights provided.")