File size: 12,144 Bytes
f01c2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import re, math, torch
from collections import OrderedDict
from typing import Optional, Tuple

from torch import nn
from torch.nn.init import trunc_normal_, normal_
import torch.utils.checkpoint

from transformers import PreTrainedModel, PretrainedConfig, AutoConfig, AutoModel


class ClassInstantier(OrderedDict):
    def __getitem__(self, key):
        content = super().__getitem__(key)
        cls, kwargs = content if isinstance(content, tuple) else (content, {})
        return cls(**kwargs)


ACT2CLS = {"silu": nn.SiLU}

ACT2FN = ClassInstantier(ACT2CLS)


class WeightedNorm(nn.Module):
    def __init__(self, hidden_size):
        """
        WeightedNorm
        """
        super().__init__()
        self.hidden_size = hidden_size
        self.norm = nn.LayerNorm(self.hidden_size)
        self.wheight = nn.Parameter(torch.ones(self.hidden_size))
        normal_(self.wheight, mean=1, std=.02)

    def forward(self, x):
        x = self.norm(x)
        return x * self.wheight


class PerceiverMLP(nn.Module):
    def __init__(
            self,
            hidden_size: int,
            intermediate_size: int,
            output_size: int,
            hidden_act: str,
    ):
        super().__init__()
        self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.down_proj = nn.Linear(intermediate_size, output_size, bias=False)
        self.act_fn = ACT2FN[hidden_act]

    def forward(self, x):
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))


# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


class PerceiverAttention(nn.Module):
    def __init__(self, connector_config, layer_idx: Optional[int] = None) -> None:
        """Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
        super().__init__()

        self.layer_idx = None
        self.hidden_size = connector_config.text_hidden_size
        self.num_heads = connector_config.resampler_n_heads
        self.head_dim = connector_config.resampler_head_dim
        self.num_key_value_heads = connector_config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads

        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

        self.is_causal = False

    def forward(
            self,
            latents: torch.Tensor,
            context: torch.Tensor,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            output_attentions: bool = False,
            use_cache: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """
        Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!

        Args:
            latents (`torch.Tensor`): Tensor of shape [bsz, n_latents, embed_dim] representing fixed length latents to compress to.
            context (`torch.Tensor`): Tensor of shape [bsz, seq, embed_dim] representing long-form context to resample.
            output_attentions (`bool`, *optional*, defaults to `False`): Whether to return attention weights.
            use_cache (`bool`, *optional*, defaults to `False`): Whether to use past_key_value for caching.
        """
        bsz, q_len, _ = latents.size()
        kv_seq_len = q_len + context.size()[1]

        hidden_states = torch.concat([context, latents], dim=-2)

        query_states = self.q_proj(latents)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        past_key_value = getattr(self, "past_key_value", past_key_value)

        if past_key_value is not None:
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
                f" {attn_weights.size()}"
            )

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)

        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


PERCEIVER_ATTENTION_CLASSES = {
    "eager": PerceiverAttention,
}


class PerceiverLayer(nn.Module):
    def __init__(self, connector_config, layer_idx: int):
        super().__init__()
        self.hidden_size = connector_config.text_hidden_size
        self.n_latents = connector_config.num_output_tokens
        self.depth = connector_config.resampler_depth
        self.ff_multi = connector_config.ff_multi

        self.input_latents_norm = WeightedNorm(self.hidden_size)
        self.input_context_norm = WeightedNorm(self.hidden_size)
        self.self_attn = PERCEIVER_ATTENTION_CLASSES[connector_config._attn_implementation](connector_config,
                                                                                            layer_idx=layer_idx)
        self.post_attention_layernorm = WeightedNorm(self.hidden_size)
        self.mlp = PerceiverMLP(
            hidden_size=connector_config.text_hidden_size,
            intermediate_size=connector_config.text_hidden_size * self.ff_multi,
            output_size=connector_config.text_hidden_size,
            hidden_act=connector_config.hidden_act,
        )

    def forward(
            self,
            latents: torch.Tensor,
            context: torch.Tensor,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            output_attentions: Optional[bool] = False,
            use_cache: Optional[bool] = False,
            **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            latents (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            context (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """
        residual = latents

        latents = self.input_latents_norm(latents)
        context = self.input_context_norm(context)

        latents, self_attn_weights, present_key_value = self.self_attn(
            latents=latents,
            context=context,
        )

        latents = residual + latents
        residual = latents

        latents = self.post_attention_layernorm(latents)
        latents = self.mlp(latents)
        latents = residual + latents

        outputs = (latents,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class PerceiverResampler(nn.Module):
    """Perceiver Resampler that compresses input embeddings into a fixed number of latents."""

    def __init__(self, connector_config) -> None:
        super().__init__()
        self.hidden_size = connector_config.text_hidden_size
        self.hidden_act = connector_config.hidden_act
        self.n_latents = connector_config.num_output_tokens
        self.depth = connector_config.resampler_depth

        # Create Latents for Perceiver
        self.latents = nn.Parameter(torch.zeros(self.n_latents, self.hidden_size))

        # Create Transformer Blocks
        self.layers = nn.ModuleList([PerceiverLayer(connector_config, idx) for idx in range(self.depth)])
        self.norm = WeightedNorm(self.hidden_size)
        self._use_flash_attention_2 = connector_config._attn_implementation == "flash_attention_2"

    def forward(
            self,
            context: torch.Tensor,
            attention_mask: torch.Tensor = None,
    ) -> torch.Tensor:
        # seq embed -> bsz seq embed
        latents = self.latents.unsqueeze(0).expand((context.shape[0], *self.latents.size()))

        compressed_context = latents
        for i, perceiver_layer in enumerate(self.layers):
            layer_outputs = perceiver_layer(
                compressed_context,
                context,
                past_key_value=None,
                output_attentions=False,
                use_cache=False,
            )
            compressed_context = layer_outputs[0]

        compressed_context = self.norm(compressed_context)
        return compressed_context


def build_mm_projector(
    input_dim, 
    output_dim, 
    projector_type, 
    hidden_act='silu', 
    delay_load=False, 
    token_input_shape=0,
    **kwargs
    ) -> nn.Sequential:
    
    modules = [nn.Linear(input_dim, output_dim)]
    mlp_gelu_match = re.match(r'.*mlp(\d+)x_gelu$', projector_type)
    if mlp_gelu_match is not None:
        mlp_depth = int(mlp_gelu_match.group(1))
        for _ in range(mlp_depth - 1):
            modules.append(nn.GELU())
            modules.append(nn.Linear(output_dim, output_dim))

    return nn.Sequential(*modules)


class MMConnector(PreTrainedModel):
    config_class = PretrainedConfig

    def __init__(self, config: PretrainedConfig) -> None:
        super().__init__(config)
        self.proj = build_mm_projector(config.vision_hidden_size, config.text_hidden_size,
                                       config.projector_type, token_input_shape=config.token_input_shape)
        self.resampler = PerceiverResampler(config)

    def forward(self, x):
        x = self.proj(x)
        x = self.resampler(x)
        return x