--- license: apache-2.0 base_model: microsoft/swinv2-base-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-base-patch4-window8-256-Kaggle_test_20231120 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.936830835117773 --- # swinv2-base-patch4-window8-256-Kaggle_test_20231120 This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window8-256](https://huggingface.co/microsoft/swinv2-base-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1843 - Accuracy: 0.9368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2115 | 0.99 | 44 | 0.1843 | 0.9368 | | 0.1445 | 1.99 | 88 | 0.1849 | 0.9368 | | 0.109 | 2.98 | 132 | 0.1720 | 0.9368 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0