--- license: apache-2.0 base_model: distilbert/distilbert-base-multilingual-cased tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-multilingual-cased-finetuned-ner-lenerBr results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br config: lener_br split: validation args: lener_br metrics: - name: Precision type: precision value: 0.761528608027327 - name: Recall type: recall value: 0.7616912235746316 - name: F1 type: f1 value: 0.7616099071207431 - name: Accuracy type: accuracy value: 0.9554657562878841 --- # distilbert-base-multilingual-cased-finetuned-ner-lenerBr This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: 0.1792 - Precision: 0.7615 - Recall: 0.7617 - F1: 0.7616 - Accuracy: 0.9555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 490 | 0.2100 | 0.7139 | 0.6624 | 0.6872 | 0.9394 | | 0.2608 | 2.0 | 980 | 0.1962 | 0.7059 | 0.7508 | 0.7276 | 0.9443 | | 0.0681 | 3.0 | 1470 | 0.1858 | 0.7225 | 0.7649 | 0.7431 | 0.9486 | | 0.0382 | 4.0 | 1960 | 0.1792 | 0.7615 | 0.7617 | 0.7616 | 0.9555 | | 0.0248 | 5.0 | 2450 | 0.2068 | 0.7715 | 0.8149 | 0.7926 | 0.9560 | | 0.0173 | 6.0 | 2940 | 0.2029 | 0.7112 | 0.8031 | 0.7544 | 0.9529 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1