--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner-harem results: [] --- # distilbert-base-uncased-finetuned-ner-harem This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2870 - Precision: 0.6543 - Recall: 0.6256 - F1: 0.6397 - Accuracy: 0.9433 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 282 | 0.3862 | 0.4247 | 0.2901 | 0.3447 | 0.9041 | | 0.4179 | 2.0 | 564 | 0.3053 | 0.5411 | 0.4216 | 0.4739 | 0.9228 | | 0.4179 | 3.0 | 846 | 0.2923 | 0.6195 | 0.5025 | 0.5549 | 0.9315 | | 0.2108 | 4.0 | 1128 | 0.2770 | 0.5641 | 0.5346 | 0.5489 | 0.9322 | | 0.2108 | 5.0 | 1410 | 0.2789 | 0.6104 | 0.5548 | 0.5813 | 0.9369 | | 0.1279 | 6.0 | 1692 | 0.2793 | 0.6171 | 0.5953 | 0.6060 | 0.9382 | | 0.1279 | 7.0 | 1974 | 0.2790 | 0.6348 | 0.6037 | 0.6188 | 0.9417 | | 0.0881 | 8.0 | 2256 | 0.2864 | 0.6490 | 0.6206 | 0.6345 | 0.9419 | | 0.0615 | 9.0 | 2538 | 0.2874 | 0.6414 | 0.6003 | 0.6202 | 0.9417 | | 0.0615 | 10.0 | 2820 | 0.2870 | 0.6543 | 0.6256 | 0.6397 | 0.9433 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1