--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner-harem results: [] --- # distilbert-base-uncased-finetuned-ner-harem This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2626 - Precision: 0.5556 - Recall: 0.5565 - F1: 0.5560 - Accuracy: 0.9336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 282 | 0.3748 | 0.4065 | 0.2749 | 0.3280 | 0.9053 | | 0.403 | 2.0 | 564 | 0.2924 | 0.5558 | 0.4705 | 0.5096 | 0.9266 | | 0.403 | 3.0 | 846 | 0.2863 | 0.6589 | 0.5278 | 0.5861 | 0.9347 | | 0.1961 | 4.0 | 1128 | 0.2626 | 0.5556 | 0.5565 | 0.5560 | 0.9336 | | 0.1961 | 5.0 | 1410 | 0.2710 | 0.6279 | 0.5919 | 0.6094 | 0.9403 | | 0.1074 | 6.0 | 1692 | 0.3046 | 0.6699 | 0.5818 | 0.6227 | 0.9408 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1