GuiTap commited on
Commit
490af9c
·
verified ·
1 Parent(s): 1755cda

End of training

Browse files
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert/distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - lener_br
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: distilbert-base-uncased-finetuned-ner-lenerBr
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: lener_br
21
+ type: lener_br
22
+ config: lener_br
23
+ split: validation
24
+ args: lener_br
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.7477750426055672
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.8118832236842105
32
+ - name: F1
33
+ type: f1
34
+ value: 0.7785115820601283
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9644699967525048
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # distilbert-base-uncased-finetuned-ner-lenerBr
44
+
45
+ This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the lener_br dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.1546
48
+ - Precision: 0.7478
49
+ - Recall: 0.8119
50
+ - F1: 0.7785
51
+ - Accuracy: 0.9645
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 100
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 490 | 0.2131 | 0.6201 | 0.6604 | 0.6396 | 0.9359 |
83
+ | 0.264 | 2.0 | 980 | 0.1828 | 0.7004 | 0.7504 | 0.7246 | 0.9508 |
84
+ | 0.0776 | 3.0 | 1470 | 0.1564 | 0.6582 | 0.8137 | 0.7278 | 0.9537 |
85
+ | 0.0437 | 4.0 | 1960 | 0.1644 | 0.7485 | 0.7623 | 0.7553 | 0.9573 |
86
+ | 0.0288 | 5.0 | 2450 | 0.1555 | 0.7620 | 0.7662 | 0.7641 | 0.9614 |
87
+ | 0.0208 | 6.0 | 2940 | 0.1874 | 0.7530 | 0.7759 | 0.7643 | 0.9550 |
88
+ | 0.0143 | 7.0 | 3430 | 0.1546 | 0.7478 | 0.8119 | 0.7785 | 0.9645 |
89
+ | 0.0117 | 8.0 | 3920 | 0.1717 | 0.7014 | 0.7677 | 0.7330 | 0.9592 |
90
+ | 0.0102 | 9.0 | 4410 | 0.1884 | 0.7734 | 0.7714 | 0.7724 | 0.9613 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.41.1
96
+ - Pytorch 2.1.2
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:91ab2b2e9daa9dcd5edb63ca9ca8954c06ef25f573d41b263b5e9a8d55ba273a
3
  size 265503852
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c3cf3133f7361084ed7bed952b3280fa9616f760e1231cb732d1c75ded9e0af
3
  size 265503852
runs/Oct03_01-37-02_776030ea938d/events.out.tfevents.1727920508.776030ea938d.34.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83ead865d05521b020138e1041fcdb0e8ee80f7f212cb50311e6c2c0e9782f01
3
+ size 560