--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner-lenerBr results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br config: lener_br split: validation args: lener_br metrics: - name: Precision type: precision value: 0.7477750426055672 - name: Recall type: recall value: 0.8118832236842105 - name: F1 type: f1 value: 0.7785115820601283 - name: Accuracy type: accuracy value: 0.9644699967525048 --- # distilbert-base-uncased-finetuned-ner-lenerBr This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: 0.1546 - Precision: 0.7478 - Recall: 0.8119 - F1: 0.7785 - Accuracy: 0.9645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 490 | 0.2131 | 0.6201 | 0.6604 | 0.6396 | 0.9359 | | 0.264 | 2.0 | 980 | 0.1828 | 0.7004 | 0.7504 | 0.7246 | 0.9508 | | 0.0776 | 3.0 | 1470 | 0.1564 | 0.6582 | 0.8137 | 0.7278 | 0.9537 | | 0.0437 | 4.0 | 1960 | 0.1644 | 0.7485 | 0.7623 | 0.7553 | 0.9573 | | 0.0288 | 5.0 | 2450 | 0.1555 | 0.7620 | 0.7662 | 0.7641 | 0.9614 | | 0.0208 | 6.0 | 2940 | 0.1874 | 0.7530 | 0.7759 | 0.7643 | 0.9550 | | 0.0143 | 7.0 | 3430 | 0.1546 | 0.7478 | 0.8119 | 0.7785 | 0.9645 | | 0.0117 | 8.0 | 3920 | 0.1717 | 0.7014 | 0.7677 | 0.7330 | 0.9592 | | 0.0102 | 9.0 | 4410 | 0.1884 | 0.7734 | 0.7714 | 0.7724 | 0.9613 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1