--- license: apache-2.0 base_model: distilbert/distilroberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilroberta-base-finetuned-ner-harem results: [] --- # distilroberta-base-finetuned-ner-harem This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2169 - Precision: 0.6576 - Recall: 0.6851 - F1: 0.6711 - Accuracy: 0.9489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 282 | 0.2950 | 0.4796 | 0.4388 | 0.4583 | 0.9183 | | 0.3687 | 2.0 | 564 | 0.2216 | 0.5693 | 0.5821 | 0.5756 | 0.9362 | | 0.3687 | 3.0 | 846 | 0.2170 | 0.5850 | 0.6060 | 0.5953 | 0.9373 | | 0.1701 | 4.0 | 1128 | 0.1990 | 0.6352 | 0.6522 | 0.6436 | 0.9464 | | 0.1701 | 5.0 | 1410 | 0.1978 | 0.6558 | 0.6910 | 0.6730 | 0.9481 | | 0.1123 | 6.0 | 1692 | 0.1998 | 0.6378 | 0.6701 | 0.6536 | 0.9495 | | 0.1123 | 7.0 | 1974 | 0.2112 | 0.6643 | 0.6851 | 0.6745 | 0.9490 | | 0.0809 | 8.0 | 2256 | 0.2153 | 0.6571 | 0.6806 | 0.6686 | 0.9480 | | 0.0572 | 9.0 | 2538 | 0.2133 | 0.6647 | 0.6836 | 0.6740 | 0.9502 | | 0.0572 | 10.0 | 2820 | 0.2169 | 0.6576 | 0.6851 | 0.6711 | 0.9489 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1