--- license: apache-2.0 base_model: distilbert/distilroberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilroberta-base-finetuned-ner-harem results: [] --- # distilroberta-base-finetuned-ner-harem This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1882 - Precision: 0.6628 - Recall: 0.6836 - F1: 0.6730 - Accuracy: 0.9512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 282 | 0.2799 | 0.4758 | 0.4403 | 0.4574 | 0.9202 | | 0.3348 | 2.0 | 564 | 0.2225 | 0.5810 | 0.5940 | 0.5875 | 0.9396 | | 0.3348 | 3.0 | 846 | 0.2105 | 0.6015 | 0.6149 | 0.6081 | 0.9389 | | 0.1571 | 4.0 | 1128 | 0.1979 | 0.6732 | 0.6642 | 0.6687 | 0.9534 | | 0.1571 | 5.0 | 1410 | 0.1882 | 0.6628 | 0.6836 | 0.6730 | 0.9512 | | 0.0948 | 6.0 | 1692 | 0.2099 | 0.6196 | 0.6612 | 0.6397 | 0.9495 | | 0.0948 | 7.0 | 1974 | 0.2251 | 0.6900 | 0.6776 | 0.6837 | 0.9540 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1