--- license: apache-2.0 base_model: distilbert/distilroberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilroberta-base-finetuned-ner-harem results: [] --- # distilroberta-base-finetuned-ner-harem This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2053 - Precision: 0.6638 - Recall: 0.6836 - F1: 0.6735 - Accuracy: 0.9498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 282 | 0.2811 | 0.4809 | 0.4896 | 0.4852 | 0.9235 | | 0.3394 | 2.0 | 564 | 0.2218 | 0.5679 | 0.5866 | 0.5771 | 0.9377 | | 0.3394 | 3.0 | 846 | 0.2205 | 0.5708 | 0.5776 | 0.5742 | 0.9347 | | 0.1635 | 4.0 | 1128 | 0.2027 | 0.6290 | 0.6478 | 0.6382 | 0.9469 | | 0.1635 | 5.0 | 1410 | 0.1895 | 0.6542 | 0.6806 | 0.6672 | 0.9504 | | 0.106 | 6.0 | 1692 | 0.2055 | 0.6334 | 0.6448 | 0.6391 | 0.9470 | | 0.106 | 7.0 | 1974 | 0.1992 | 0.6328 | 0.6687 | 0.6502 | 0.9502 | | 0.0744 | 8.0 | 2256 | 0.2051 | 0.6804 | 0.6925 | 0.6864 | 0.9513 | | 0.0522 | 9.0 | 2538 | 0.1998 | 0.6745 | 0.6866 | 0.6805 | 0.9502 | | 0.0522 | 10.0 | 2820 | 0.2053 | 0.6638 | 0.6836 | 0.6735 | 0.9498 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1