File size: 13,763 Bytes
769c87e |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f80e046a7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f80e046a830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f80e046a8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f80e046a950>", "_build": "<function ActorCriticPolicy._build at 0x7f80e046a9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f80e046aa70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f80e046ab00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f80e046ab90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f80e046ac20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f80e046acb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f80e046ad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f80e046add0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f80e046d780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1064960, "_total_timesteps": 1050000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687911432258642817, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDMeb1Ix626OktBNNa3+S+gE+c5TU2dswAAgD8AAIA/s0s2vRSeqj+G8SS/Ojryvt7bGz0fwKo9AAAAAAAAAABNm7c9XE90urpzQzpgBDU1XRh5u2jgZLkAAAAAAACAP32Qzr6TRWE/ph3KvgLXmL60OIe+F8tMvAAAAAAAAAAAjT7lPqdeVT9wWF+9edgLvuMArj0YR7a9AAAAAAAAAAAA30U9e1CJutLBn7sj1k44MC0cu/DV3DcAAIA/AACAPw2zkj1IAYO69Qw3vDrHr7R9nHO76p8jNAAAgD8AAIA/M/NVuvZUCbojJCc6uso+NiNWTDrSV0i5AACAPwAAgD9yS4C+Te12Pz5+LjzsFXO+SOXTvVbSOT0AAAAAAAAAAC2qFr4Pzje8TGkXO8YOKzkZWZo9G89MugAAgD8AAIA/wFNZPgB0nj/Yjlg+2WIvvsd0Lj6zTV+7AAAAAAAAAABTmwY+e0DYujerKLtfy1842McpvA5QQDkAAIA/AACAP2ZU37z2BQG8+RQDPUUYyL2UHT095pe+PgAAgD8AAIA/M3aCPR8l87mSApS7fB4VtnMscLu0ZbE6AACAPwAAgD+AwJg9e+iBumdcgbsc+3w4QWAyu4xQDzoAAIA/AACAPxqfQj2P5he6j70KuqnP1rTrMsu7ZJwlOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.014247619047619065, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDAwKNQ0oBuMAWyUTRcBjAF0lEdAlCWxjBl+VnV9lChoBkdAYEhjDKoybmgHTegDaAhHQJQrrKhcqvx1fZQoaAZHQGThCWmgrYpoB03oA2gIR0CULSTNt65YdX2UKGgGR0Bj2IetCAtnaAdN6ANoCEdAlC1nI+4b0nV9lChoBkdAYPDHWjGkvmgHTegDaAhHQJQuPK4hEBt1fZQoaAZHQFwNigkC3gFoB03oA2gIR0CUMfGMn7YTdX2UKGgGR0Bgp6WLP2PDaAdN6ANoCEdAlEQC9ytFKHV9lChoBkdAYIU3vx6OYWgHTegDaAhHQJRHD0RODap1fZQoaAZHQF8PK8tf5UNoB03oA2gIR0CUSOTH80k4dX2UKGgGR0BiYwJVsDW9aAdN6ANoCEdAlElybc45tHV9lChoBkdAOBcUh3aBZ2gHTX4BaAhHQJRLHpW3jMp1fZQoaAZHQGL4LHEMspZoB03oA2gIR0CUU6oegctHdX2UKGgGR0Bk/Mx7AtWdaAdN6ANoCEdAlFPxZ6lchXV9lChoBkdAZgua86FM7GgHTegDaAhHQJRukGA08/51fZQoaAZHQGJ3dmHxjKBoB03oA2gIR0CUcYQ8wHqvdX2UKGgGR0Bdq/R/mT1TaAdN6ANoCEdAlHSgJHAh0XV9lChoBkdAYJ3ywwCbMGgHTegDaAhHQJR54rYoRZl1fZQoaAZHQGI3KpDNQj5oB03oA2gIR0CUeqkqc3ERdX2UKGgGR0BkqjPppvgnaAdN6ANoCEdAlH8Y5ksjFHV9lChoBkdAYz02ycCo0mgHTegDaAhHQJSAP8cdYGN1fZQoaAZHQGXQI2GZeAxoB03oA2gIR0CUgHIE8q4IdX2UKGgGR0BhoGYQarFPaAdN6ANoCEdAlIENAood/HV9lChoBkdAYzpgBtDUmWgHTegDaAhHQJSWfHKfWc11fZQoaAZHQGKjPh60IC5oB03oA2gIR0CUmtt/FzdUdX2UKGgGR0Bg/uBBiTdMaAdN6ANoCEdAlJ2x1cMVlHV9lChoBkdAWxvRWtEG7mgHTegDaAhHQJSeh78ejmF1fZQoaAZHQGBW0YsNDtxoB03oA2gIR0CUoUHU+cH4dX2UKGgGR0BeRAcLjPv8aAdN6ANoCEdAlK2HBYV6/3V9lChoBkdAYY+NMGorF2gHTegDaAhHQJSt19a2Wpt1fZQoaAZHQGYCKZlWfbtoB03oA2gIR0CUtDd+XqqwdX2UKGgGR0Bld03juKGdaAdN6ANoCEdAlMax4QjD9HV9lChoBkdAYwQO3lS0jWgHTegDaAhHQJTJ44Ia99N1fZQoaAZHQGMgbyH2ys1oB03oA2gIR0CUz1TIvJzUdX2UKGgGR0Bk3haV2Rq5aAdN6ANoCEdAlNAqhtcfNnV9lChoBkdAYA6U5dWyT2gHTegDaAhHQJTVIS+QEIR1fZQoaAZHQGWVpXp4bCJoB03oA2gIR0CU1pfhuO0cdX2UKGgGR0BiFf863iJgaAdN6ANoCEdAlNbWxIJ7cHV9lChoBkdAXMn3g1m8NGgHTegDaAhHQJTXlb2USqV1fZQoaAZHQF8nvy9VWCFoB03oA2gIR0CU8BIg/1QJdX2UKGgGR0BcCXuZ1FH8aAdN6ANoCEdAlPO9NahYeXV9lChoBkdAY7nHjIaLoGgHTegDaAhHQJT2EyCWeH11fZQoaAZHQGLHamGdqcpoB03oA2gIR0CU9sb5/LDAdX2UKGgGR0Bll9RBNVR2aAdN6ANoCEdAlPj65oXbd3V9lChoBkdAYR7LW7OE/WgHTegDaAhHQJUEAHjZL7J1fZQoaAZHQF8Bmjj7yhBoB03oA2gIR0CVBFSKFZgYdX2UKGgGR0BkPCTyJ9ApaAdN6ANoCEdAlQtow7DEWXV9lChoBkdAX0eioKlYU2gHTegDaAhHQJUjNyEL6UJ1fZQoaAZHQGN5sxO+IuZoB03oA2gIR0CVJow482aVdX2UKGgGR0BgeyXMQmNSaAdN6ANoCEdAlSw6hQFcIXV9lChoBkdAYdIggX/HYGgHTegDaAhHQJUtAIHC4z91fZQoaAZHQC49MsYl6Z9oB01SAWgIR0CVL3JNCZ4OdX2UKGgGR0Bjd5Dw6QvIaAdN6ANoCEdAlTLoLCvX9XV9lChoBkdAYnf/d69kBmgHTegDaAhHQJU0SsOoYN11fZQoaAZHQFaIeJHiFTNoB03oA2gIR0CVNIX0Gu9wdX2UKGgGR0Bg/W2/i5uqaAdN6ANoCEdAlTU5iExqPHV9lChoBkdAYH2nndO6/mgHTegDaAhHQJVOKj3225R1fZQoaAZHQGTl2BjFyaNoB03oA2gIR0CVUyeWOZLJdX2UKGgGR0BlHTRQaaTfaAdN6ANoCEdAlVY8gQpWm3V9lChoBkdAX5rYkE9t/GgHTegDaAhHQJVXLIo3Jgd1fZQoaAZHQFqApiI+GGpoB03oA2gIR0CVWdRf4REndX2UKGgGR0Bjng3PzFuOaAdN6ANoCEdAlWSldxAB1nV9lChoBkdAXbYn6VMVUWgHTegDaAhHQJVsP+kxh2J1fZQoaAZHQF6grO7g88toB03oA2gIR0CVb0JhOP/8dX2UKGgGR0BfR6TW5H3DaAdN6ANoCEdAlYNp48lolHV9lChoBkdAZVeVUMoc72gHTegDaAhHQJWLmeQMhHN1fZQoaAZHQGT8lNtZV4poB03oA2gIR0CVjLcgyM1kdX2UKGgGR0BklA7FKkEcaAdN6ANoCEdAlY90RODaoXV9lChoBkdAYFdDD0lJH2gHTegDaAhHQJWS+6OHWSV1fZQoaAZHQGC6qIBRyfdoB03oA2gIR0CVlBfs/pt8dX2UKGgGR0BWo6o2n88+aAdN6ANoCEdAlZRCjQAuI3V9lChoBkdAXSohKUVzqGgHTegDaAhHQJWUyQPqcEx1fZQoaAZHQD+e1Cw8nu1oB00mAWgIR0CVo6D28IzFdX2UKGgGR0BkLB8YyfthaAdN6ANoCEdAlaWFN1yNoHV9lChoBkdAYerhDPWxyGgHTegDaAhHQJWoQjRlYlp1fZQoaAZHQGJMSnk1dgRoB03oA2gIR0CVqerwOOKgdX2UKGgGR0BiEWj2zv7WaAdN6ANoCEdAlapeVTrE+HV9lChoBkdAY1obRWtEHGgHTegDaAhHQJWr5kiD/VB1fZQoaAZHQF09vrWy1NRoB03oA2gIR0CVtB5OJtSAdX2UKGgGR0BjhJE2Hck/aAdN6ANoCEdAlbpNAkcCHXV9lChoBkdAcihztCzC12gHTWQBaAhHQJW9KygPEsJ1fZQoaAZHQGWs3/HYHxBoB03oA2gIR0CVvVdV/+bWdX2UKGgGR0Bhm3RG+bmVaAdN6ANoCEdAldSsxO+IuXV9lChoBkdAY+HJ2+wkgWgHTegDaAhHQJXZ2yD7Ikt1fZQoaAZHQF35vStvGZNoB03oA2gIR0CV2ocqvvBrdX2UKGgGR0BkxXyup0fYaAdN6ANoCEdAldwKVlf7anV9lChoBkdAY5ajcEeQuGgHTegDaAhHQJXeM3kxREZ1fZQoaAZHQGBozguRLbpoB03oA2gIR0CV3xkzGgjAdX2UKGgGR0BflARK6FufaAdN6ANoCEdAld/EFr2xp3V9lChoBkdAcaJ9xIatLmgHTRUCaAhHQJXm5tl7MPl1fZQoaAZHQGJRLMs6JZZoB03oA2gIR0CV8VinYQJ5dX2UKGgGR0Bg9TZg5R0maAdN6ANoCEdAlfPHzcynDXV9lChoBkdAZJV0NjLB9GgHTegDaAhHQJX3+lGgBcR1fZQoaAZHQGFuvBi1AqxoB03oA2gIR0CV+7MPz4DcdX2UKGgGR0BbvHYL9deIaAdN6ANoCEdAlf6wdS2phnV9lChoBkdAOGyZjQRf4WgHTTcBaAhHQJX/g9ZA6dV1fZQoaAZHwDtuvKU3XI5oB01oAWgIR0CWEiJTER8MdX2UKGgGR0BmuzqptJnQaAdN6ANoCEdAlhRoHTqjanV9lChoBkdAZNLhMrVe8mgHTegDaAhHQJYXDcXWOIZ1fZQoaAZHQGJBeDnNgShoB03oA2gIR0CWFzD5TIeYdX2UKGgGR0BdB6lYU34saAdN6ANoCEdAlhqMHKOktXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 260, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |